
Surogou
A game world using Perlin Noise

Computer Science, K2 Module, Fall 2014

Anders Bjørn Rørbæk Pedersen (45481, abrp@ruc.dk),
Anders Olsen (45189, andeols@ruc.dk),
Clément Kuta,(55758, ckuta@ruc.dk).

Supervisor: Morten Rhiger (mir@ruc.dk)

December 22, 2014

i

Abstract

This project is about the design and implementation of the game “Surogou”
using procedural content generation with the algorithm perlin noise to do ter-
rain modelling and distribution of objects. The main objective is how pro-
cedural content generation can be utilized in games, while maintaining high
performance and to investigate new opportunities that arises, when applying
procedural techniques. As procedural content generation is unpredictable by
nature, the key challenge in the project is to ensure high consistency and con-
trollability of the algorithm. The project concludes, that utilizing procedural
content generation is beneficial in terms of creating a large variety of game
spaces procedurally. However, issues needs to be addressed in order to main-
tain a decent performance. Furthermore, there are several benefits of using
these techniques, such as the potential to shorten the development time of a
game.

Contents

Contents ii

1 Introduction 1
1.1 Project Description . 3

2 Procedural Content Generation 5
2.1 Procedural . 6
2.2 Generation . 8
2.3 Content . 9
2.4 Summary . 14

3 Design of Surogou 15
3.1 Requirements . 16
3.2 Terrain Modelling . 16
3.3 Infinite World . 25
3.4 L-system trees . 31
3.5 Storing information . 33

4 Implementation of Surogou 35
4.1 Unity . 35
4.2 Process . 37
4.3 Gameplay . 38
4.4 Structure . 38
4.5 Rendering . 44
4.6 Terrain . 49
4.7 TerrainManager . 54
4.8 Perlin Noise implementation . 58
4.9 Objects and distribution . 59
4.10 L-System implementation . 62
4.11 Collection of coins . 63

5 Test and Analysis of Surogou 65
5.1 Performance . 65
5.2 Consistency . 74
5.3 Controllability . 75

ii

CONTENTS iii

5.4 Bugs and known issues . 78

6 Discussion 81

7 Conclusion 85

8 Perspectives 87

Bibliography 89

A Code Appendix 91
A.1 GUIManager.cs . 91
A.2 GameManager.cs . 94
A.3 ChunkManager.cs . 97
A.4 TerrainManager.cs . 100
A.5 Chunk.cs . 106
A.6 MoveToCamera.cs . 114
A.7 PerlinNoise.cs . 115
A.8 PlayerCollision.cs . 118
A.9 PlayerSound.cs . 119
A.10 Rotation.cs . 121
A.11 Tree2.cs . 122
A.12 FireFly.cs . 137
A.13 Coin.cs . 139

B Instruction guide 141
B.1 Surogou . 141
B.2 Surogou (Unity Project) . 141
B.3 Perlin Tester . 141
B.4 L-System Tester . 142
B.5 Infinite World . 142

Chapter 1

Introduction

Early computers had little memory to store data and early video games there-
fore faced challenges storing large amounts of data, in the form content, such
as graphics (textures, sprites), sound (audio) and game spaces (levels and ter-
rain). Some game developers addressed these challenges, not by storing a small
and limited amount of content within the game, but by generating content with
algorithms as it is needed. In these games the technique and solution to the
memory problem was therefore to generate the content in a procedural fashion.
In the 1980s, some game developers explored these techniques.

Figure 1.1: Sentinel is a videogame, developed by Geoff Crammond and pub-
lished by Firebird in 1986, which overcame the limitations of memory by using
procedural generated

The videogame The Sentinel(1986), had a clever system, to overcome the
limitation of the hardware, of using only 48 to 64 bytes to store an impressive
10.000 different game levels [20] while the game Elite, from the same year,
have a game world consisting of 282 million million million galaxies with 256
solar systems each [19]. Today, videogame developers do not have the same

1

2 CHAPTER 1. INTRODUCTION

limitations in regards of storage, as hard drives are getting larger in relation to
the size of the games. The current size of videogames is described in the French
newspaper article ”Le surpoids concerne aussi les jeux vidéo” [4]. The size of

Figure 1.2: Comparison of data storage (GB) between recent video games [4]

the videogames can often be directly related to the amount and size of content.
With the new generation of consoles and videosgames, game developers creates
large amounts of high definition content manually. This have an direct affect on
the required storage space, but more importantly it prolongs the development
time. While. The challenges in the early videogames were related to the
hardware limitations of storage, whereas videogames of today’s challenge is
the amount of content, that is being produced for the games. One solution,
to the prolonged development time, could be to generate some of the content
procedurally. Furthermore, faster processors and larger memory allows new
opportunities to generate content procedurally as a way to solve this issue, but
also enables the creation of even larger worlds, such as seen in the upcoming
videogame No Man’s Sky (2015).

Figure 1.3: No Man’s Sky is an upcoming videogame, developed by the British
studio Hello Games, which features a procedurally generated open universe

1.1. PROJECT DESCRIPTION 3

Enhanced replayability of a game, can also be done by having adaptive
content. To generate content procedurally is also known as Procedural Content
Generation (PCG), and can be defined as:

”the algorithmical creation of game content with limited or indirect
user input” - Julian Togelius, Noor Shaker, Mark J. Nelson [13, p.
1]

The key term of PCG is content, which refers broadly (but not limited to as
explained later) to: graphics, audio, game spaces.

1.1 Project Description

The methodological approach to investigate PCG, as a potential means to solve
the earlier described issues, will be by creating our own implementation of a
videogame named Sourgou that utilizes PCG. We will furthermore also look
into the possibilities that PCG enables. We will investigate the following four
topics, which will also serve as requirements for our implementation:

• Performance

• Infinity

• Controllability

• Consistency

First, it is important that performance is not reduced, when switching from
having large amounts of stored content to procedurally generated content. If it
is not possible to achieve the same performance, the benefits of PCG would be
less attractive. Second, PCG allows for the creation of completely new types
of games, where content is generated as it is being consumed (played) [13, p.
3]. Because of this, PCG can be used for generating game worlds that can be
characterized as being infinitely large from a players perspective. Therefore, we
want to investigate how and which procedural methods can be used to create
such an infinite game world. Thirdly, while content is being generated by an
algorithm and not directly by a human designer, it is still preferable to have
some degree of control over the generated content. If a game have a procedural
algorithm for generating trees, it should be capable of generating a wide range
of different types of trees. The designer should also be able to define a certain
type of tree within the game using a limited set parameters, while not having
to design the actual tree. Lastly, in relation to generating an infinite game
world, it is often desirable that the game world is consistent in the term of the
content that is being generated. When exploring the game world, the player
expects that the same content is being generated when he revisits a specific
location in the world. It is also important, that changes or modifications in the
world are stored.

4 CHAPTER 1. INTRODUCTION

Project boundaries

Throughout this project, we will focus on the four primary topics, Performance,
Infinite, Consistency and Controllability. In order to do this we will investigate
various procedural methods that we want to use for our implementation of
an infinite game world. In some instances, we use code examples for further
explanation. Furthermore, the concrete video game that we present in this
project is implemented using Unity engine, whereas other engines, such as
the newer Unreal Engine 4, is not suitable for our purposes because it has
constraints within it that prohibits us from using methods of PCG during real-
time generation. We will limit ourself to the two algortimes, perlin noise and
L-systems as our primary methods for generating content.

Chapter 2

Procedural Content Generation

This chapter focuses extensively on what PCG is and how the three aspects
(Procedural, Content and Generation) can be defined. PCG is well known
by experts to be a rather fussy concept and without clear boundaries. This
chapter describes our understanding of what PCG is. This is done with the
use of a general definition inspired by pcg.wikidot.com [9], which is an online
community that focuses on collecting and discussing information about Pro-
cedural Content Generation. Furthermore, we go into details discussing what
specifically constitutes PCG and what does not [16].

As for a general definition of procedural content generation, pcg.wikidot.com
states the commonly used definition:

”Procedural content generation (PCG) is the programmatic gener-
ation of game content using a random or pseudo-random process
that results in an unpredictable range of possible game play spaces.
[...] procedural content generation should ensure that from a few
parameters, a large number of possible types of content can be gen-
erated.” [9]

The definition explains the importance of randomness and unpredictability and
how few parameters should be able to produce a wide range of possibilities.

If content is created intentionally by a user or if the actions that leads to the
generation of content can be predicted by the user, it is often not considered as
PCG, even if it is assisted by a procedural techniques [16, p. 2]. In the game
Sim City (2013) the player can make construction plans for roads and types of
urban areas, but the actual placement and types of buildings are done using
procedural techniques. It is therefore the algorithm, that places the buildings
neatly around the networking of roads, that is the procedural process. A game
like Sim City would therefore not be considered PCG, as the result of placing
roads yields a predictable outcome.

5

6 CHAPTER 2. PROCEDURAL CONTENT GENERATION

Figure 2.1: Sim City is a city building simulation, developed by the Maxis and
published by Electronic Arts in 2013.

In the following sections, we will dissect PCG into the three aspects Proce-
dural, Content and Generation.

2.1 Procedural

The procedural aspect involves the methodological approach when generating
content. In the following, we will describe these approaches using Procedu-
ral Content Generation in Games: A Textbook and an Overview of Current
Research [13].

• Online vs. offline Content that is procedurally generated can either be
offline or online. Online content refers to content that is being generated
at run-time, while offline content have been generated at development
time. Online content therefore means that it is generated, while it is
being consumed.

• Necessary Vs. optional PCG can be used for generating game content
that is required for completion of a level, or used as auxiliary content,
which can be discarded or exchanged for other content. The primary
distinction between necessary and optional procedurally generated con-
tent is that necessary content cannot be altered in a way that disable the
completion of the game while optional is the rest of the content. These
two approaches are simply a reminder that when generating content, us-
ing PCG, you might have content that is necessary for completion of the
game, which creates more restrictions in terms of how PCG must be im-
plemented. Whereas, if the PCG is optional content in the game it can
be implemented more loosely.

• Degree and Dimensions of control Even though PCG has elements
of randomness it is still preferable to have some degree of control over
the generated content. This can be done by using a set of parameters

2.1. PROCEDURAL 7

that limits the possible dimensions or use a seed for a random number
generator. This seed would generate a unique world, which means that if
one use the same specific seed again the world will be identical every time
a game session is started. This approach is interesting because it to some
extend goes against the idea of PCG being defined as unpredictable. The
reason for this kind of control, or predictability, is still considered PCG
because one do not specifically predict or determine what should be in
the world but only understands that the particular seed will generate a
specific world.

• Generic Vs. Adaptive The distinction between generic and adaptive
approach is that a generic approach does not take player behaviour into
account when content is generated, whereas adaptive generation do take
players behaviour into account. An example of a game, which uses the
adaptive approach is Left4Dead (Figure 2.2). In Left4Dead (2008) the
difficulty of the game is adjusted based on the players actions in order
to keep the player engaged. An example of generic content is in the
video game Terraria (2011) (Figure 5.15) which generates a random world
without the player input being taken into account. When the player
acts in the game by building houses or digging for resources, there is no
procedurally generated content from the input of the player.

Figure 2.2: Left4Dead is a multiplayer
First Person Shooter, developed by
Turtle Rock Studios in 2008, which fea-
tures adaptive content.

Figure 2.3: Terraria is a sandbox
games, developed by Re-Logic in
2011, which plays in a generic
procedurally generated world.

• Stochastic Vs. Deterministic These terms define if content is sup-
posed to be recreate-able or random when using PCG. The deterministic
approach enables the game content to be regenerated given the same
starting point and parameters, whereas stochastic is the opposite and
can be considered completely random. As an example the determinis-
tic approach could be the use of a seed for generating the world and
the stochastic approach could be a consideration of the world being ever
changing. In Diablo III (2012) (Figure 2.4), the indoor and outdoor maps
have rigged starting points and ending points, but the content between
them changes regardless of any input from the player. This would suggest

8 CHAPTER 2. PROCEDURAL CONTENT GENERATION

a stochastic implementation of the content between the starting point and
end point of the map.

Figure 2.4: Diablo 3 is a RPG, developed by the Blizzard Intertainment in
2012 were procedural techniques are used for creating the game space.

• Constructive Vs. Generate-and-test A constructive approach is
simply an implementation of PCG which is generated once and is not
permitted to be altered. Whereas a generate-and-test approach can be
generated a number of times until it has reached a satisfactory solution.
A generate-and-test, could for instance be a recursive backtracking maze
algorithm.

• Automatic generation Vs. Mixed authorship The approach of
mixed authorship is an implementation of PCG where a human (player or
designer) cooperates with the algorithms in order to generate the desired
content. This approach is often used in game development tools such as
level design software and 3D modelling software, where unpredictability
serves as a source for inspiration.

These approaches are not meant to be determined before making a game, but
rather as a tool to understand the different kinds of approaches of PCG. It is
also important to understand, that a game is not a procedural game by utilizing
PCG, but rather that the content in a game can be procedurally generated.
Futhermore, one is not limited to use only one approach, when generating
content, but could utilize several.

2.2 Generation

This section describes an overview of the different types of methods for gener-
ations of content. This part is concerned with the various types of algorithms
that can be used for the generation of content. To describe these methods we
use Procedural Content Generation of Games - A Survey [7].

2.3. CONTENT 9

• Pseudo-Random Number Generators (PRNG): Pseudo-Random
techniques are relevant when considering the generation of seemingly ran-
dom content such as clouds or mountains. Perlin noise is a PRNG-based
technique because it generates random values for generating noise that
can be combined on multiple layers and by scaling.

• Generative Grammars (GG): Generative grammars are sets of rules
operating on individual words or symbols that generate only grammatically-
correct sentences. Such algorithms are Lindermayer-systems (L-systems),
which are commonly used for creating fractals and trees, Wall Grammers
used for building/room generation and Shape Grammers. The underly-
ing understanding of GG is that the outcome or end-result will always
be a ’correct’ result. This means that the generation might use random
values but the outcome will always follow a specific pattern and therefore
always have in the case of a tree different leafs, roots, body or crown.

• Image Filtering (IF): Image Filtering has the main goal to improve
an image in regard to a subjective measure or emphasize certain char-
acteristics of an image to display hidden information. The techniques
Binary Morphology and Convolution Filters uses the IF-based pattern.
These techniques can be used for dilation or erosion of images and re-
move noise, smooth or sharpen, detect edges of object or even detect the
movement direction of objects in an image. These techniques could be
used for filtering and manipulating existing textures into new textures,
which in turn could save storage space since its generated on the fly and
not loaded from storage.

• Spatial Algorithms (SA): Is the manipulation of space to generate
game content. The output is created by using an input with some sort of
structure. This includes techniques for decomposing a map into a grid,
integrating grids into maps, which is called layers. It can also be recursive
figures that consistently copies themselves like Fractals.

• Modeling and Simulation of Complex Systems (CS): Describes
natural phenomena with mathematical equations, models and simula-
tions can be used to achieve this. Techniques that focuses on modeling
and simulation are Cellular Automata, Tensor Fields and Agent-based
Simulation.

2.3 Content

The purpose of this section is to determine what content is in reference to
PCG. To fulfil this goal we use the article ”Procedural Content Generation
for Games: A Survey” [7] which classifies the different types of content. The
reason we use this particular article’s classification of game content is that
it was specifically designed for understanding what can be considered to be
procedurally generated content in games. The article presents six categories,

10 CHAPTER 2. PROCEDURAL CONTENT GENERATION

which are game bits, game space, game systems, game scenarios, game design
and derived content. The most fundamental content is called game bits.

”Game bits are elementary units of game content, which typically do
not engage the user when considered independently [...] Textures are
images used in games for adding detail to geometry and models, and
for giving a visual representation to game elements such as menus.
[...] Sound [...] is used to set game atmosphere and pace, and
sound effects are used to give feedback to the player on actions and
environment change. [...] Vegetation is used in many games for a
more realistic and thus immersive look. [...] Buildings are essential
to represent urban environments in games. [...] Behavior is the way
in which objects interact with each other and the environment, [...]
Fire, Water, Stone, and Clouds are often used in games to create
a more believable world.” [7, p. 4-5]

The first game bit, which is mentioned, is textures. There are numerous tech-
niques for procedurally generating textures, which includes noise or pattern
based algorithms. Noise algorithms are PRNG-based techniques which can be
used to create natural looking textures, such as water, clouds and fire, while
pattern-based algorithms can be used to create new textures based on exist-
ing images or patterns. PRNG and pattern-based algorithms can also be used
for creating raw sound, while generative grammars can be used to generate a
rhythms and music through a rule-based system specified by a composer or
sound modular. An example of vegetation can be plants and trees that cover
ridges of mountains. Vegetation does not only serve as aesthetic features in a
game, but can also be a gameplay element, where vegetation then functions
as a hiding place for the player. There are various algorithms that enables
the generation of vegetation and the algorithm may be specific to a certain
type of vegetation. L-systems or Lindenmayer systems are popular choices
for generation of plants and trees. Buildings, which are game bits that is of-
ten found in games that has some kind of urban environments. Buildings are
usually significant to the player, due to the gameplay activities that surrounds
buildings, such as collecting resources to a warehouse. The generation of build-
ings can be either an iterative transformation or a set of rules that generates
unique buildings. Behaviour is the objects interaction with each other and the
environment. Behaviour is determined by the objects characteristics and its
surroundings. The explosion of fireworks has a seemingly specific pattern but
in reality, it will not always be the same. The explosion of fireworks could also
be generated through a type of L-system. Fire, Water, Stone and Clouds are
increasingly relevant in games to create realistic and believable worlds.

These game bits are all interesting in their own way and represents the
fundamental content of a video game. In the next quote, we look into what
the game space is.

”The game space is the environment in which the game takes place,
and is partially filled with game bits among which players navigate.

2.3. CONTENT 11

[...] Indoor Maps are depictions of the structure and relative po-
sitioning of indoor space partitioned into rooms. Rooms may be
interconnected by corridors, overlapped in layers interconnected by
stairs, and grouped altogether in dungeons. [...] Outdoor Maps
are depictions of the elevation and structure of an outdoor terrain.
[...] Bodies of Water such as rivers, lakes, and seas are often used
as map obstacles or even as interactive game space. Other map
features, such as teleportation areas, etc. and mountains, ridges,
ravines, grottoes, etc. may also be part of game space.” [7, p. 5]

Indoor Maps typically consist of rooms that are interconnected by corridors.
A simple implementation a maze could be done using PRNG-based or search-
based algorithms. It is common for games to have both Outdoor Maps and
Indoor Maps. Outdoor maps can be represented by elevation maps, known
as height-maps (which are greyscaled textures) which can be generated with
noise algoritmes, such as value noise, perlin noise (PRNG-based) or worley
noise (CS-based). Game space also includes, the manipulation of height-maps,
using IF-based algorithms for simulating erosion, which can create be utilized
to generate bodies of water, such as rivers, lakes and seas. Another approach to
generate outdoor maps is by using agent-based algorithms, where a landscape
is carved out by multiple agents, which each has a specific role.

”The use of game systems can make games more believable and thus
appealing. [...] Ecosystems govern the placement, evolution, and
interaction of flora and fauna through algorithms and rules. [...]
Road Networks form the basic structure of an outdoors map, serving
different purposes such as transportation between points of interest,
and structuring of and transportation within cities. [...] Urban
Environments are large clusters of buildings where many people live
together and interact with their surroundings. [...] Entity Behavior
Many types of complex player-environment interaction need to be
possible to make the player experience that a virtual world is life-
like.” [7, p. 5-6]

Ecosystems, refers to the distribution, evolution and interaction with of veg-
etation in the game space. One way to create an ecosystem is to combine
several procedural algorithms. L-systems, could be responsible for generat-
ing the trees, while also be in control of how the tree should grow over time,
where parameters, such as the elevation (height-map) of the terrain or the level
of moisture in the ground could have an impact on the generated tree. The
player could also alter the ecosystem by interacting with it. If the player, were
to chop down trees, the moisture levels would change, which would result in
muddy ground. Road Networks creates structure between points of interest.
The main issue when focusing on road networks is getting a balance between
randomness and structure. A common use for making road networks is by using
L-systems, which are used to control parameters, such as population density,
road patterns and local constraints (ie. what to do near water, at a certain

12 CHAPTER 2. PROCEDURAL CONTENT GENERATION

amount of population and should road patterns be rectangular or round shaped
as well). Buildings (which are game bits) are usually generated through some
pre-defined rules, but these rules can be altered based on the population den-
sity, which basically works like an evolutionary system that affect the growth of
buildings. A good example of Entity Behaviour is procedural algorithms that
achieves group movement of entities (ie. humans) in order to create a realistic
illusion of life-like content. This could be some sort of Artificial Intelligence
technique that makes the entities react and creates a variety of actions, which
makes the entities seem intelligent.

”Game scenarios describe, often transparently to the user, the way
and order in which game events unfold. [...] Puzzles are problems
to which the player can find a solution based on previous knowledge
or by systematically exploring the space of possible solutions embed-
ded in the problem [...] Storyboards are design aids for the game
developer or player. [...] The Story of a game is often key in cre-
ating a good gaming experience. [...] The concept of Levels is used
in nearly every game as a separator between gameplay sequences.”
[7, p. 6-7]

Puzzles in a game are often used in game as a gameplay element, where the
player needs to solve a certain problem in order to progress in the game. Exam-
ples of puzzles are crosswords, riddles or chess(-like) gameplay. The common
understanding of Storyboards are represented as comics, which has a sequential
scene description of events. However, they can also guide the players the way
that Story is another example of game scenarios which creates a logical pro-
cess for game events to unfold. It also provides the player with the motivation
to accomplish goals. Levels in game are used to get the player from a start
position to an end position. When the player arrives at the exit of a level, it
will be determined by the game conditions whether the player will progress to
the next level, while this also serves as dividing the game into stages gradually
increases the difficulty of the game.

”The System Design of a game entails “the creation of mathemati-
cal patterns underlying the game and game rules” [...] The World
Design of a game is “the design of a setting, story, and theme””

Since the System Design is based on underlying mathematical patterns and
game rules the main challenge is to provide a balanced game experience for all
players involved in the game. This becomes increasingly more important when
considering a competitive game such as Dota 2 (2013). Dota 2 has a pool of
heroes with individual abilities, which the player picks from. All these heroes
needs some sort of mathematical balance in order to make a fair game for every
player. In terms of a procedurally generated game with a mathematical pattern
underlying the game we could consider a generator that takes game-board rules
as input and creates a new game by changing or transforming those rules. The
World Design is very similar to the System Design but instead it focuses on

2.3. CONTENT 13

the setting, story and theme of the world. The procedural generation would
therefore result in a new model of environments or maps.

Figure 2.5: DOTA 2 is a multiplayer online battle arena, developed by Valve
in 2013, where teams of online players are competing against each other

”News and Broadcasts A game may show its players news items
based on their actions and other changes in the game’s universe; [...]
Leaderboards—player ranking tables—are popular for a variety of
game genres and are used by fan-sites to serve millions of players”

News and Broadcast & Leaderboards are considered derived content because
it is derived from the players play trough of the game. This content could be
used for a procedural generation. A case study [2] on the videogame World of
Warcraft (2004) resulted in the creation of comics based on key moments in a
player game session. They were able to create a system that could collect a set
of significant screenshots accompanied by matching comic layout with speech
bubbles that mimics sound effects and dialogues. Another example is online
leaderboards, which is used to show ranks of a players in competitive games.

14 CHAPTER 2. PROCEDURAL CONTENT GENERATION

Figure 2.6: An automatic comic generation system [2] for the videogame World
of Warcraft (2004)

2.4 Summary

In summary, not all systems in videogame has to use procedurally methods. An
example would be game that has a soundsystem, which does not utilize proce-
dural generation, whereas the textures in the game could be done procedurally.
It also is important to highlight that Procedural does not mean random ??.
It is not the content that is random, but the stochastic elements (the random
number generator) in the algorithm, that makes the content unpredictable.

Chapter 3

Design of Surogou

In this chapter, we will describe the design of our implementation of a proce-
durally generated game world. Our focus is not by any means to make a game
that is entertaining, but rather focus on how to create the game world, which
means that we will not have a typical game design document. That said, we
will still have some simple game mechanics, which is exploration of the game
world and collection of coins. Our primary focus is on Game Spaces and Game
Bits and the creation of them using PCG methods, as frequently as possible.
Therefore, we will go into detail about the design choices in order to explain the
chosen methods and algorithms. This chapter will continue in a requirement
specification to clarify, what needs to be done in the implementation of our
game. Furthermore, we will look into the procedural methods that we have
been using to create our game Surogou. We will limit ourselves to only explain
the applied methods in this project, even though there are several other ap-
proaches to create this content. To fulfil that goal, we will first explain how
we can model terrain by creating two-dimensional height maps that produces
natural looking landscapes. We will also look into the basic concepts of how
to create a consistent and infinite game world by using the players position as
input.

Design Choices

In reference to game bits and game spaces, we want to procedurally generate
game bits, such as textures and vegetations, while our game space will be an
outdoor environment landscape. We therefore need to identify methods that
can produce content such as mountains, ridges, trees, rocks, water, earth etc.
We will also focus on the topic of infinity. To define it, one could say that
the player should theoretically be able to go infinitely in one direction, where
new content will keep being generated. This also means that we need to use
procedural methods that allows us to create content in real-time (the online
approach) in order to maintain the illusion of an infinite game environment.
There are many methods to procedurally model terrain, as described in the
Procedural Content Generation chapter. We want to create a realistic land-

15

16 CHAPTER 3. DESIGN OF SUROGOU

scape and the most adequate method for that is to use fractal noise generators
and especially perlin noise, which can be used to generate a natural environ-
ment [12]. Additionally, we can also use perlin noise for the distribution of
objects such as trees, rocks and coins. As the world should also be populated
with vegetation, we will look into L-systems, which seems to be the obvious
choice for creating organic looking game bits, such as plants and trees.

3.1 Requirements

In our project description, we explained the four main topics, which are Perfor-
mance, Infinity, Controllability and Consistency. We will now translate these
topics into requirements for our implementation of a game world, which is
named Surogou.

• Performance is important because the content is generated in real-time
which produces heavy and continuous computation of content. The main
goal is to have a stable and high number of frames per second to produce
a good game experience for the player. It is common for PC and consoles
to have FPS in the range of 30 to 60 FPS [15].

• Infinity is the concept that we want to implement without impacting the
size of the game. This means that content should be produced infinitely
as the player progresses trough the world.

• Controllability is a requirement, as ”procedural content generation should
ensure that from a few parameters, a large number of possible types of
content can be generated”[9], and relates to the degree and dimensions of
control of PCG. These parameters therefore serve as a sort of controlla-
bility that can generate different types of content.

• Consistency is a requirement for our game to produce a logical and
coherent game world. That means that whenever the player revisiting a
previously seen area in the game world, objects in that world should be
consistent, in regards of generating the same content. If the player meets
an animal, he would also expect it to be there the next time he revisits
that place, while interactions that changes the world, should also remain
changed. An interaction could be that the player can slay the animal,
which means that he would expect that the animal keeps being dead the
next time he revisits that location.

3.2 Terrain Modelling

Height-map generation is nowadays often based on fractal noise
generators, such as perlin noise, which generates noise by sampling
and interpolating points in a grid of random vectors. Rescaling and

3.2. TERRAIN MODELLING 17

adding several levels of noise to each point in the height-map results
in natural, mountainous-like structures. [12, p. 2]

When modelling terrain, certain important properties [13, p. 57] must be
presented:

• The realism of the output

• The performance of the algorithm

• The control of the generation process.

• Consistency (should produce the same result each time)

One of the techniques, when modelling terrain is to use height-maps, which
consists of two-dimensional grids of elevation. There are several procedural
algorithms for generating these height-maps, but most of them are coherent
noise algorithms which produces different kinds of noise, such as value noise
(A), perlin noise (B), simplex noise (C) or worley noise (D).

Figure 3.1

Besides the mentioned noise(s), other techniques have also been known to
be used. An example is agent-based search algorithms [13, p. 67], where a
number of agents are used to carve out the terrain and cellular automata that
imitate natural phenomenons, such as water erosion.

18 CHAPTER 3. DESIGN OF SUROGOU

Generating a random terrain could simply be done by using a random num-
ber generator to determine the heights on each point, and while this technique
works, the results are not useful [13, p. 59]. Even though the performance is
rather good, the produced output does not look natural, as every value is gen-
erated independently. Neither do we have any control of the output. However,
the coherent noise algorithms addresses theses issues of control of the genera-
tion process and the realism of the output. A Coherent noise algorithm can
be defined by the following properties [1]:

• Passing in the same input value will always return the same output value

• A small change in the input value will produce a small change in the
output value

• A large change in the input value will produce a random change in the
output value

All the coherent noise algorithms uses random noise as a starting point and
applies some kind of interpolation to smooth out the values.

Perlin noise is one of the preferred algorithms for creating gradient noise for
height-maps [13, p. 67] and textures such as marble, wood, clouds, fire. Perlin
noise was first done by Ken Perlin, while working on the film Tron (1982)
and can be implemented with an arbitrary number of dimensions, where the
two-dimensional version is the one that is commonly used for creating height-
maps. Three-dimensional versions of perlin noise can be seen in the video
game Minecraft (2009), that creates a voxel-based game world, where three
dimensions are required to carve out terrain features, such as caves and ravines,
which cannot be represented in a two-dimensional grid.

Figure 3.2: Minecraft is a videogame, developed by Mojang in 2009 and use
perlin noise for generating the terrain

In this project, we will be focusing on using perlin noise as our preferred
method in order to create two-dimensional height-maps. Due to the relative

3.2. TERRAIN MODELLING 19

simple implementation and the amount of resources and documentation ex-
plaining the algorithms in code snippets such as catlikecoding.com [6], which
our implementation will be based on (see more on page 58)

The simplest implementation of the coherent noise algorithm is a value
noise. Figure 3.1 (A) gives a good basis on how these algorithm works.

Value Noise

The elevation at a specific point on the earth’s surface is statisti-
cally related to the elevation at nearby points. If you pick a random
point within 100 km of Mount Everest, it will almost certainly have
a high elevation. [13, p. 59]

The idea behind creating a coherent noise algorithm, is to interpolate be-
tween the adjacent neighbour values in a lattice grid to avoid sharp transition.
The algorithm can be divided into two parts: creating an array of pseudo
random numbers that makes basis for the grid and the interpolation between
points. The array usually consists of 511 values ranging from 0 - 255 and can
either be done by using a predefined permutation table or created by a ran-
dom number generator, if seeds are required. Important parameters for the
algorithm are the frequency and amplitude, which determines the space
between the samples and the upper and lower bound of the values. When im-
plemented in two dimensions, a low frequency with high amplitude can
produce mountain like shapes and a high frequency and low amplitude
will produce a hill like landscape.

Figure 3.3

The above permutation table (figure 3.3) is the one originally used by Ken
Perlin [10] in 1983. This sequence of number will always produce a tilling
pattern, but will only be noticeable, if we see a large portion of the array.
Whenever interpolating between the values in two-dimensional value noise we
need to determine the four corners of the sample point.

20 CHAPTER 3. DESIGN OF SUROGOU

Listing 3.1: Value Noise Algortime

1 private const SIZE = 511:
2 private static int[] perm = { 511 values }
3 public static float Value2D (Vector3 point, float frequency) {
4 point *= frequency;
5 int ix0 = Mathf.FloorToInt(point.x);
6 int iy0 = Mathf.FloorToInt(point.y);
7 float tx = point.x - ix0;
8 float ty = point.y - iy0;
9 ix0 &= SIZE;

10 iy0 &= SIZE;
11 int ix1 = (ix0 + 1)& SIZE;
12 int iy1 = (iy0 + 1)& SIZE;
13

14 int h00 = perm[perm[ix0] + iy0];
15 int h10 = perm[perm[ix1] + iy0];
16 int h01 = perm[perm[ix0] + iy1];
17 int h11 = perm[perm[ix1] + iy1];
18

19 tx = Smooth(tx);
20 ty = Smooth(ty);
21 return Mathf.Lerp(
22 Mathf.Lerp(h00, h10, tx),
23 Mathf.Lerp(h01, h11, tx),
24 ty) * (1f / SIZE);
25 }

Listing 3.2: Smooth(float t)

1 private static float Smooth (float t) {
2 return t * t * t * (t * (t * 6f - 15f) + 10f);
3 }

We first need to store the lattice coordinates to the sample point in the variables
ix0, ix1, iy0 and iy1 and the remaining fractional part in the tx and ty
(Listing 3.1). A graphical representation of this can be seen in figure 3.6 (A).
To avoid overflow in the permutation table, we make sure that the values are
in range by using the remainder operator. In order to get the values from each
corner, we look up the permutation table and store the result in h00, h10,
h01 and h11. The next step is to interpolate between the values to get a
single value. The interpolation between the points is done in two steps. First,
the fractional part is smoothed in the horizontal and vertical direction to get a
weighted average between the points. This interpolation is known as bilinear
interpolation, as it is done in two dimensions. Bilinear interpolation though
have its drawbacks (see figure 3.4) as ”mountain slopes become perfectly straight
lines, and peaks and valleys are all perfectly sharp points” [13, 60].

3.2. TERRAIN MODELLING 21

Figure 3.4: Bilinear Interpolation, f(x) = x

To avoid this, one can use a different kind of function to smooth out the
slope. The function for linear interpolation can be represented as f(x) = x,
and will produce a straight line between 0 and 1, while f(x) = 2x3 + 3x2, will
smooth out the values in a s-shaped like curve. This is seen on figure 3.5.

Figure 3.5: S-shaped Polynomial, f(x) = 6x5 − 15x4 + 10x3

When smoothing the fractional part, one can use different polynomials. The
most commonly used is s-shaped polynomial, f(x) = 6x5 − 15x4 + 10x3, and
can be seen on figure 3.6 (B). The smoothing part can be seen on line 19 and 20
in listing 3.1 and listing 3.2. The second part is to interpolate between the four
corners using the smoothed fractional part as seen on line 21-25 in listing 3.1.

22 CHAPTER 3. DESIGN OF SUROGOU

Figure 3.6

Perlin Noise

Perlin noise looks similar to value noise but instead of using points, perlin
noise uses gradients represented as vectors. Perlin noise has advantages over
value noise. One of them is that perlin noise creates a more smooth transition
of the values, by interpolating between slopes of different steepness and direc-
tion [13, p. 61]. This means that our lattice grid is populated with vectors
instead of values. As we are using gradients, it is possible to have an extra
layer of smoothness. Rather than smoothing the change of values, we interpo-
late between rates of change of values. Our implementation of perlin noise is
based on Jasper Flicks tutorial [6] on noise algorithms and can be found in the
appendix on page 115.

3.2. TERRAIN MODELLING 23

Listing 3.3: Perlin Noise 2D

1 const int SIZE = 255;
2 private int[] perm = new int[SIZE + SIZE];
3 private static Vector2[] gradients2D = {
4 new Vector2 (1f, 0f),
5 new Vector2 (-1f, 0f),
6 new Vector2 (0f, 1f),
7 new Vector2 (0f, -1f),
8 new Vector2 (1f, 1f).normalized,
9 new Vector2 (-1f, 1f).normalized,

10 new Vector2 (1f, -1f).normalized,
11 new Vector2 (-1f, -1f).normalized
12 };
13 private const int gradientsMask2D = 7;
14 private static float sqr2 = Mathf.Sqrt (2f);
15

16 public float Perlin2D (Vector3 point, float frequency)
17 {
18 point *= frequency;
19 int ix0 = Mathf.FloorToInt (point.x);
20 int iy0 = Mathf.FloorToInt (point.y);
21 float tx0 = point.x - ix0;
22 float ty0 = point.y - iy0;
23 float tx1 = tx0 - 1f;
24 float ty1 = ty0 - 1f;
25 ix0 &= SIZE;
26 iy0 &= SIZE;
27 int ix1 = (ix0 + 1) & SIZE;
28 int iy1 = (iy0 + 1) & SIZE;
29

30 Vector2 g00 = gradients2D [perm [perm [ix0] + iy0] &
gradientsMask2D];

31 Vector2 g10 = gradients2D [perm [perm [ix1] + iy0] &
gradientsMask2D];

32 Vector2 g01 = gradients2D [perm [perm [ix0] + iy1] &
gradientsMask2D];

33 Vector2 g11 = gradients2D [perm [perm [ix1] + iy1] &
gradientsMask2D];

34

35 float v00 = Dot (g00, tx0, ty0);
36 float v10 = Dot (g10, tx1, ty0);
37 float v01 = Dot (g01, tx0, ty1);
38 float v11 = Dot (g11, tx1, ty1);
39

40 float tx = Smooth (tx0);
41 float ty = Smooth (ty0);
42 return Mathf.Lerp (
43 Mathf.Lerp (v00, v10, tx),
44 Mathf.Lerp (v01, v11, tx),
45 ty) * sqr2;
46 }

The main difference, between value noise and perlin noise can be seen on line
30-39 (Listing 3.3), where vectors are used instead of points. We still use the
same permutation table, but we define the vectors as seen on line 30-34 (Listing

24 CHAPTER 3. DESIGN OF SUROGOU

3.3). The lattice grid can thereby be represented as a grid of random vectors
as seen on figure 3.7 (B). These vectors are stored in g00, g10, g01, g11,
and returns one of the eight vectors stored in the gradients2D table, which
holds a vector with a given direction in space as seen on figure 3.7 (A). To
find a value at a non-lattice point, we need the four adjacent neighbours. If
one consider only the top left corner, we can calculate a value on that slope,
simply by multiplying the distance we have travelled along that gradient, also
known as the dot product of two vectors [13, p. 62]. The distance can also
be referred to as the fractional part stored in tx0 and ty0. The dot product
of each corner gradient is stored in v00, v01, v10, v11. Then we repeat the
same interpolation between the points, as with value noise to get a smooth
value.

Figure 3.7

Fractal noise

Fractal noise can be produced by combining several layers of noise with different
frequency and amplitude to create fractal noise. The first layer is a terrain
with large features, we then add smaller features trough each iteration, which
are finally added together [13, p. 62]. The number of iterations is controlled
with a parameter we call octaves. Our implementation uses lacunarity
and persistence [6] to control and change the output of the noise, where
each has a different effect on the end result.

Listing 3.4: Fractal noise

1 public float FractalNoise2D (Vector3 point, int octaves, float
frequency, float lacunarity, float persistence, float gain)

2 {
3 float sum = Perlin2D (point, frequency);
4 float amplitude = 1f;
5 float range = 1f;
6 for (int o = 1; o < octaves; o++) {
7 frequency *= lacunarity;
8 amplitude *= persistence;

3.3. INFINITE WORLD 25

9 range += amplitude;
10 sum += Perlin2D (point, frequency) * amplitude;
11 }
12 return (sum / range) * gain;
13 }

An example code for fractal noise can be seen on Listing 3.4, and takes six
parameters, which can be used to control the output of the noise. These both
apply to value noise and perlin noise. The first parameter (Vector3 point)
is simply a vector which, represents a position in the lattice. The number of
iterations is controlled by the octaves parameter, while frequency deter-
mines the spacing between the points. Lacunarity determines how quickly
the frequency increases in each iteration, while persistence determines
how quickly the amplitude is increased. As we might want values that goes
beyond -1 to 1, we can control this by a gain parameter.

Figure 3.8: Fractal noise with 1, 2 and 8 octaves

Other uses for noise

Besides using noise algorithms for textures and height-maps, one can also use
these to distribute vegetation and/or objects around the world, or create differ-
ent landscape types or biomes by combining several of these noise algorithms
with a threshold value. One could have a noise algorithm for the moisture in
the ground, where a high value of moisture would create a certain type of tree,
while a low value will create rocks instead. We will return to this subject in the
actual game code, where we are using this technique extensively to produce an
organic world.

3.3 Infinite World

One of our requirements is to implement an infinite game world (p. 3). This
term defines that the environment is generated in real-time as the player pro-
gresses trough the world. Of course, in order to avoid performance issues, the
world will also be destroyed as soon as the player leaves it, which is why it is
essential to talk about the notion of consistency. If the player is coming back
at a place already visited, this part of the world should be generated the same
way and with all the possible changes.

26 CHAPTER 3. DESIGN OF SUROGOU

Preliminary investigation

Figure 3.9

Our preliminary investigation focused on how to create consistency. We there-
fore created a 2D terrain made up of randomly colored cells. Each cell have a
specified color depending of their position. Only the cells close to the player
are drawn. When the player moves, all the cells are destroyed and new ones
are constructed depending of the player position. Since the color of every cells
color is determined by the 2D position, a cell with the same position will get
the same color every time. In this example, the seed for the random number
generator is determined by multiplying the x and z position of the cell. That
means that if x = 0 or z = 0, the cell will not get any color, which can be seen
on figure 3.9. The player can move from one cell to another using the arrow
keys on the keyboard. When the player at some point comes back to the same
the same location, the grid of colored cells will be the same. This allow this
world to be consistent.

As with the colors, positions can be used as an input for the perlin noise
algorithm. As perlin noise is a coherent noise algorithm, ”Passing in the same
input value will always return the same output value” [1]. When using the
player position as a basis for the input, the same content will be generated at a
given position in the game world and therefore making the world consistent. As
we can also use perlin noise to distribute the objects in the world, these rules
also apply to the distribution as well. By using a seed for the random number
generator, when creating the permutation table, we can create different worlds
or just remembering the seed if we want to create the same world. We define
that seed as a world seed because it refers to the consistency of the world. One
could simply have a world with the string ”my cool world” as a seed, which is
then translated into an integer using a hash function. This technique is used
in a lot of procedural games like Minecraft and allows the construction of the
same world with the same seed.

3.3. INFINITE WORLD 27

Mesh

In order to generate 3D content procedurally in a game, we need to have some
preliminary understanding of how a 3D mesh is constructed. Meshes can be
described as solid 3D objects that can vary in complexity depending on the
number of vertices that the mesh is made of. We will also look into what tex-
tures is and how they are mapped in order to be used on a mesh. Furthermore,
we will present how several of these meshes can be used to construct the terrain
for our game world.

Figure 3.10: Ico sphere

Vertices and triangles

Meshes are composed of nodes called vertices and graphs known as triangles.
The simplest mesh, one can create is a flat plane, which is composed of two
triangles and four vertices.

Figure 3.11: Diagram of plane

On figure 3.11 a flat plane can be seen. This plane consists of the four
vertices in red from number 0 to 3 and triangle A and B. Both triangles can
be represented as a directed graph, where each node in the graph is a vertex.
Triangle A and B can therefore written as:

28 CHAPTER 3. DESIGN OF SUROGOU

• TriangleA = {0, 2, 3}

• TriangleB = {0, 3, 1}

The construction of each triangle can either be clockwise or counter-clock wise,
which determines which of the two sides are being rendered. That means that
if we would like to create a cube, we should decide whether the cube should
be viewed from the inside or the outside. If both sides of the plane should be
rendered, we would need four triangles instead of two.

Normals

A normal is a vector perpendicular to the mesh surface. When a mesh receive
light, the direction of the normal determines the brightness on its surfaces.
Each vertex usually have a normal. When the brightness of the surface needs
to be calculated, it is done by comparing the direction of light source and
the normal [17]. If the light is coming from the same angle as the normal, the
surface will be fully lit. If the light is coming from a 90◦ angle from that normal,
the surface will not get lit. The brightness of an object therefore depends on
the angle between the normal and the light source. Shown on figure 3.12

Figure 3.12: Normals[14]

Textures

After defining the vertices, triangles and normals, the mesh needs to be tex-
tured. A texture can be thought of a picture that is wrapped around the mesh
in order to create ”the feel, appearance or consistency of a surface or a sub-
stance”[5]. If one would want to create dice, one would first create a cube
and then apply the texture in order to give the representation of a dice (see
figure 3.13). In order to do this coordinates for the texture needs to be defined.
These are known as a UV map and determines which part of the texture should
be applied to each of the six faces of the cube.

3.3. INFINITE WORLD 29

Figure 3.13: Dice UV texture on a cube[8]

When defining the UV map, we will use coordinates in two dimensions and
a scale from 0 to 1 on each axis. Those coordinates are represented by U and V
because x and y are already used for the vertices. We will have a UV coordinate
for each vertex, which then corresponds to a certain place on the texture.

Procedural meshes for terrain modeling

Figure 3.14: A chunk with modify height

An approach, to create the terrain for our implementation, is to build it from
multiple meshes, where each of these meshes can be defined as a chunk. As we
will also be explaining later in the implementation, a chunk can also contain
multiple objects in the form of others meshes but for this chapter a chunk
will have the definition as above. Each chunk has a specified size, which is
determined by the number of vertices on each axis (see figure 3.15). One could
say that the collection of chunks makes up the game space in the form of our
outdoor map. (See figure 3.14)

30 CHAPTER 3. DESIGN OF SUROGOU

Figure 3.15: A chunk (with a chunk size of 4) : group of multiple meshes

As the world is constructed by several chunks, we can adjust the total
number of vertices in the landscape by changing the number and size of the
chunks, which will allow us to adjust the level of detail, draw distance in the
game world. This gives us the choice to either create a large number of small
chunks or a small number of larger chunks. Therefore, we will have some
control over the performance and total number of vertices in the game world.
Furthermore, we can utilize the illusion of the world being infinite, in the same
manner as we did with the colored cells on page 25 by moving the chunks in
relation to the players position.

Figure 3.16: Player modify the chunks in real time

To further explain this concept, one can think of content that is being
constructed and destroyed at the same time, while the player is moving in the

3.4. L-SYSTEM TREES 31

game world. The main idea is therefore to construct the terrain in front of him
and destroy the part of the terrain which is behind him. We will consequently
only construct the world which is adjacent to player. It is also important that
the same content is created, when the player returns to a previously visited
position to keep the consistency of the world. (See figure 3.16)

When constructing or moving a chunk, it is only the height (y-axis) of the
vertices that needs to be calculated in order to update the terrain. As every
vertex has x and z positions in the game world, it is possible to use these, as
an input for the perlin noise algorithm. We will then use the returned value
from the perlin noise algorithm and apply it to the vertices y-axis, without
changing the x and z position for that vertex. By using this approach we
will be able to construct a landscape-like terrain where the player can walk
infinitely in every direction. And as mentioned before, the permutation table
can also be constructed by a random number generator using a world seed,
which enables us to create the same world, if we use the same seed when
creating the permutation table.

3.4 L-system trees

L-system (L for Lindenmayer) is a type of generative grammar and string
rewriting system that can be used to produce fractals. L-systems was developed
in 1968 by Aristid Lindenmayer, a Hungarian biologist to model and describe
the behaviour of plant cells [11, preface vi].

Simple example

The main idea of this system is rather simple: One must first chose a set of
symbols that can be replaced. The symbols are also called variables and is
defined as V . A set of production rules is also defined that describes which
symbols that can be replaced by others symbols. These rules are defined as
P . Lastly, one needs to define the number of iteration n and a start symbol
w, which can be a string of symbols [11, p. 4]. The L-system can either be
stochastic or deterministic. It is stochastic if there is more than one production
rule for each symbol, which also means that each rule needs a weight. This
weight determines the probability for the rule to be used during the iteration.
This also means that a deterministic L-system will always produce the same
outcome. To give a basic understanding of a deterministic L-system we can
look at the following example with the properties:

G = {V,w, P},
V = {A,B},

P = (A→ AB), (B → BA),
w = A,
n = 3.

The production rules P = A → AB means that A is replaced with AB and
the rule P = B → BA means that B is replaced with BA. w = A means that

32 CHAPTER 3. DESIGN OF SUROGOU

A will be our start symbol. When the production rules and the start symbol
have been defined we can iterate a number n times trough these rules in order
to make a more complex string of symbols:

n = 0 : A,
n = 1 : AB,

n = 2 : ABBA,
n = 3 : ABBABAAB.

We could have as many iterations as needed, but we could also use recursion to
do the iterations. With L-systems we can produce tree like structures by using
these symbols to represent procedures. As every step can be done recursively
using a divide and conquer method, each branch can be thought of a symbol.
Furthermore, we can also represent the previous example in a tree-structured
graph 3.17, where the depth of the graph is the number of iterations.

Figure 3.17: Simple L-system graph with A and B

Tree example

In order to make a tree, we will develop this example with the following prop-
erties:

G = {V,C,w, P},
V = {A,B},

C = {L(, R(,)},
P = (B → AL(B)R(B)),

w = B,
n = 3.

In this case, we will add some constants, defined as C, which are symbols that
cannot be replaced. This means that variables V can produce constants C
but constants C cannot produce anything. After defining these properties, we
will assign a procedure to each symbol. A will draw the trunk, B will draw
a branch, ”L(” will rotate the following procedures by 45 degrees to the left,

3.5. STORING INFORMATION 33

”R(” will rotate the following procedures by 45 degrees to the right and ”)”
will revoke the changed angle from the last ”R(” or ”P (” procedure.

n = 0 : B,

n = 1 : AL(B)R(B),

n = 2 : AL(AL(B)R(B))R(AL(B)R(B)),

n = 3 :
AL(AL(AL(B)R(B))R(AL(B)R(B)))R(AL(AL(B)R(B))R(AL(B)R(B)))

We can see that the tree gets rather complex in just a few iterations. An
illustration of this above tree can be seen on figure 3.18.

Figure 3.18: Draw tree

As mentioned before, we can have more production rules for each symbol,
which means that we need to assign a weight on the graph. When combined
with the previously explained concept of creating a consistent game world using
a world seed, we can use the position or/and the height produced by the terrain
modelling as a seed the the L-system’s random number generator. This will
give us the opportunity to have a deterministic and therefore consistent algo-
rithm, while still be able to produce different trees. So even with a stochastic
algorithm, we will be able to have some control over the outcome.

3.5 Storing information

In the previous sections we were talking about how to create procedural meshes
and how to use it to make an infinite world. In this section, we will focus on
how to store modifications in the game world. Until now, we have only focused
on how to generate a somehow static and unchangeable world created using a
world seed. As mentioned before everything in the world is based on the world
seed and therefore produces an identical environment when the player returns
to a given location. If we introduce that the player can make changes to the
world, we need to store these changes in order to make a consistent world.

34 CHAPTER 3. DESIGN OF SUROGOU

Storing meshes modification

There are two primary methods to store modifications in a game world. The
first one is to store the final state of every object of the game. Minecraft uses
this system. It procedurally generate a fixed sized game world from a seed and
stores every object in the world that has been modified. This means that if the
player would alter all block in the Minecraft world, we would potentially have
to store a huge amount of data [18].

Storing events

The second method is to store the actual event. To give an example of this, one
could think of an explosion which affect several meshes. Instead of storing each
of the affected meshes, that have been altered by the explosion, one could just
store the actual explosion. This means that every time that the player returns
to a given position, the game will produce the same explosion, which then
result in the same change to the environment. This method can be preferable
in cases where a single modification affect multiple meshes.

Storing meshes modification and actions

Another possible option could be a mix between these two previous methods.
If a player makes only one modification, you can store it. And after a number
(depending of the system) of modification on the same meshes, it could be
more efficient just to store the final state of the meshes.

Infinite storage Problem

Another issue that arises is that as the world is infinite or arbitrarily large, we
could end up having to store an infinite or arbitrarily large amount of data,
which is not possible. Minecraft, does in fact have this storage issue. To
highlight this problem with numbers, we can say that at first, a Minecraft map
size has the potential to be almost 235 petabytes. Therefore, to reduce file size
and memory usage, Minecraft’s Creator, Markus ”Notch” Persson, decided to
split the terrain into 16 x 128 x 16 chunks and store them on the user’s disk[18].
In our case we need to have a limit on how much data that needs to be stored.
Also, the content that needs to stored may vary depending on the nature of the
content. Some things might not even have to be stored, while other more vital
modification does. This can be solved, either by only storing information for a
fixed time or delete stored information if the, when the player is a fixed distance
from the modification. It will therefore be a question of defining the time or
distance depending on all these parameters. As mentioned before, some changes
are more vital than others and it is more important that the world ”feels”
consistent to the player, than the game world is actually consistent. To give an
example, a player would properly not forget about destroying a building in the
game world, but might not notice or remember that he accidentally destroyed
a little plant.

Chapter 4

Implementation of Surogou

In this chapter we describe our final implementation of Surogou The purpose
of developing the game is to apply procedural techniques to a game like envi-
ronment and to study the issues we have set out to solve. Surogou is a strange
procedural infinite world which the player can explore and where the procedu-
ral modelling of the landscape is done by using perlin noise. Objects in the
world such as trees are also done procedurally but created using L-Systems and
distributed with perlin noise as well. The terrain is made of multiple chunks
that moves and updates according to the players position. Surogou contains no
gameplay besides exploration of the infinite world and the possibility to collect
coins. However, the gameplay could eventually become enriched in the future
because as many possibility lies within the world. As the primary goal is to
investigate procedural content generation, the focus is about the techniques
used to render and create an infinite world. To further investigate the issues
of storing information, we added a simple game mechanism where the player is
supposed to collect coins that are distributed throughout the infinite world. We
have chosen to develop the game with the Unity Engine and therefore we will
shortly describe what Unity is and how it works in order to fully understand
the structure of the game.

4.1 Unity

In this section we will briefly explain what Unity is and how it operates. Unity
is a system for creating multi-platform games and interactive content, where
the developer uses a graphical interface for structuring the application and
programming using scripts to add functionalities.

35

36 CHAPTER 4. IMPLEMENTATION OF SUROGOU

Figure 4.1: The Unity Editor

Basics

The graphical interface is known as the Unity Editor (figure 4.1) and is the
primary tool for making games in Unity. The editor is used to create and
define all the content and their properties within the game, while also cre-
ating the game environment. Unity works with a concept known as scenes,
which are populated with Game Objects, which can have various behaviours
and graphical representation. These Game Objects are the objects that make
all content in the game. Game Objects can be extended and have different
components attached to them such as meshes, scripts, sound and other graph-
ical components. These Game Objects and their components can also be saved
as so-called, prefabs, which works as a template for a game asset. A prefab
could be a controllable player character or an instance of an AI enemy. Using
prefabs makes it possible to change the functionality and properties for all the
Prefabs that uses the template. Furthermore, these can be used across several
projects, and their attached scripts therefore works independently. Scripting is
a way to add behaviour to the game and Unity scripts either be written in C#,
UnityScript or Boo. The anatomy of a basic scripts can be seen listing 4.1.

Listing 4.1: Script Anatomy

1 using UnityEngine;
2 using System.Collections;
3

4 public class MainPlayer : MonoBehaviour {
5

6 // Use this for initialization
7 void Start () {
8

9 }
10

11 // Update is called once per frame
12 void Update () {
13

14 }
15 }

4.2. PROCESS 37

The Start() method (line 7) is called when the game is started and is used for
initialization. When the game is running the Update() method is called. This
is done once per frame (line 12). This method could include code for movement,
triggering actions, responding to player input or anything that needs to be
handled during gameplay.

Creating Game Objects

Listing 4.2: Methods to create a Game Object within a script

1 SomeClass someClass = new SomeClass();
2 Instantiate("Some Prefab with the script attached") as SomeClass;
3 GameObject gameObject = new GameObject().AddComponent("<SomeClass>

");

One can either place Game Objects in the scene by placing them in the graph-
ical interface or instantiate them inside a script. This also means, that one
would often not use the new keyword to create an object of a class (as seen on
listing 4.2 line 1) but instead instantiate a prefab with all its scripts attached
to it(line 2). Or just create a new empty Game Object and then attach a script
to it (line 3). By using the two latter methods the Game Object can be seen
and referenced in the graphical interface.

Referencing

As all Game Objects have a name, the most typically method for referencing
another Game Object is to find it by its name as seen on listing ?? line 1. If
one script component need to get access to another script component attached
to the same or another Game Object, the GetComponent<"otherScript">
is used as seen line 2. The last method to make a reference to another game
object is to create a public Game Object and utilize the graphical interface to
make the reference.

Listing 4.3: Reference to another game object

1 GameObject player = GameObject.Find("Player");
2 PlayerSound ps = player.gameObject.GetComponent<PlayerSound");

4.2 Process

The process of writing Surogou have been iterative, where several smaller pro-
grams have been created in order to investigate the different techniques. We
have included some of these programs. Instructions on how to run these pro-
grams can be found on page 141.

38 CHAPTER 4. IMPLEMENTATION OF SUROGOU

4.3 Gameplay

Figure 4.2: Coins to collect

The gameplay in Surogou, is primarily based on exploration, where the player
is supposed collect coins. There are no way of winning the game, as the purpose
of collecting coins is to create an example of how to store changes in the game
world. The player uses the mouse and keyboard to walk around in the game
environment, where ”W” ”A” ”D” and ”S” are used for walking and ”Space” is
used for jumping. When pressing the ”escape” key, the player enters an ingame
menu, that gives players options to quit the game or to generate a new world
from a seed code.

4.4 Structure

Figure 4.3: The relationship between the managers

4.4. STRUCTURE 39

To structure the program, we have created several main classes that acts as
managers which are responsible of each part of the program. The main man-
agers are the Game Manager, Chunk Manager, Terrain Manager and GUI
Manager. Other parts of the code are independent, as each class (also known
as scripts) in Unity always have a start method, which is called once when the
program is executed, and an update class which is called once every frame.
These classes include the code for the day/night cycle, the player’s movement,
sound and other independent classes. The Game Manager is responsible for
checking in which state the program currently is in. The GUI Manager man-
ages the graphical user interface. The Chunk Manager is responsible for the
managing chunks. The Terrain Manager is responsible for managing the size
and number of chunks, the different biome types, distribution of objects, world
seed and everything related to perlin noise. The program can be in three
different states:

1. Title menu state

2. Pause menu state

3. In-game state

In order to draw different graphical user interfaces, based on which state the
program is in, we need a class to manage this. This is done in the GUI Manager.
The GUI manager uses Unity’s own static method OnGUI(), as seen on listing
4.4.

Listing 4.4: OnGUI() in the GUIManager class

34 void OnGUI(){
35 if (gm.state == 0) {
36 DrawTitle();
37 }
38 if (gm.state == 1) {
39 DrawMenu();
40 }
41 if (gm.state == 2) {
42 DrawHUD();
43 }
44 }

A main game object is placed in the scene that has the four manager classes
attached to it. The relation between these classes can be seen on figure 4.3.
The GUI manager has access to the Game Manager in order to be able to draw
different GUI depending on the state of the program. The GUI manager could
have direct access to the Terrain Manager in order to change the seed directly
but it seems more logically to do this trough the Game Manager, so the GUI
manager is only responsible for drawing the GUI. The Game Manager have
access to both the Terrain Manager and the Chunk Manager. It needs access
to the Terrain Manager, as the Terrain Manager is responsible for parameters
such as the random seed, chunk size and number of chunks. Furthermore,

40 CHAPTER 4. IMPLEMENTATION OF SUROGOU

it needs access to the Chunk Manager in order to initialize and update the
position of the chunks.

Figure 4.4: The title state v. 16 December 2014

The Chunk Manager which is responsible for managing the list of chunks
in the game world also have access to the Terrain Manager in order to get
information about chunk size and number of chunks. When the program is
first executed, it enters the title menu state. This works as a setting page
where different parameters can be set in order to create the world as seen on
figure 4.4.

Drawing distance (number of chunk) and world seed can be adjusted at
this page. Whenever the slider is changed, it is passed to the Terrain Manager
trough the Game Manager. When clicking on the ”Generate World”, the game
goes into the in-game state (2) and the StartGame() method in the Game
Manager is called as seen on listing 4.5.

Listing 4.5: Generate World in DrawTitle()

82 if (GUI.Button (new Rect (sWidthCenter, sHeightCenter+40, 100, 30),
"Generate World")) {

83 gm.state = 2;
84 gm.StartGame ();
85 }

The listing 4.6 show a part of the Game Manager code. We need the global
variables (line 6-10) that references to the ChunkManager, TerrainManager
and different kind of Game Objects to exchange information. Furthermore,
the Game Manager also have two variables integers that are used for stor-
ing the points and changing the state of the program. The Start() (line
19) method is called when the program is initialized. There are three ways
of referencing other Game Objects and scripts and two of them are used
here. As the ChunkManager and the TerrainManager are attached to
the same Game Object as the GameManager, a way to reference the scripts

4.4. STRUCTURE 41

is by using the gameObject.GetComponent<T>() method. gameObject
(line 21-22) refers to the Game Object, which the GameManager script is
attached to. The T refers to the type of object, which should be returned
when calling GetComponent<T>(). In our case T is the ChunkManager
and the TerrainManager. When referencing to another Game Object, one
can also use the name of this Game Object. The reference is done by using the
GameObject.Find("name of a gameobject") method on line 23-25.

Listing 4.6: The Game Manager

1 using UnityEngine;
2 using System.Collections;
3

4 public class GameManager : MonoBehaviour
5 {
6 private ChunkManager cm;
7 private TerrainManager tm;
8 private GameObject cam;
9 private GameObject menuCam;

10 private GameObject music;
11 private int points = 0;
12 public int state = 0; // 0 - menu, 1 - paused and 2 ingame
13

14 /**
15 * **********************
16 * called when the application is started
17 * **********************
18 **/
19 void Start ()
20 {
21 cm = gameObject.GetComponent<ChunkManager> ();
22 tm = gameObject.GetComponent<TerrainManager> ();
23 cam = GameObject.Find ("First Person Controller");
24 menuCam = GameObject.Find ("MenuCamera");
25 music = GameObject.Find ("Music");
26 }

When entering the menu state, the camera position is changed so it over-
looks the current generated terrain instead of seeing the world trough the play-
ers eyes. This is also the reason for having two cameras instead of one. In
order to swap of point of view between these two cameras, the Game Object,
which they are attached are simply disabled or activated (line 37,40,43 and 55
to 60). The Update() method, which is called once per frame, first calls the
CheckInput() method. This method (line 67-75), checks if the ”escape” key
has been pressed and if the program state is ”in-game”. If the statement re-
turns true, the menuCam position is changed according to the players position
(line 71). The next lines, takes care of executing the code, which are related to
that state. Most important is the ”in-game” state (state = 2, line 44-45),
which calls the function UpdateChunkManager() in the ChunkManager
and is only called if the chunks are instantiated.

42 CHAPTER 4. IMPLEMENTATION OF SUROGOU

Listing 4.7: The Game Manager continued

28 /**
29 * **********************
30 * Core update method for the application and its different

states
31 * **********************
32 **/
33 void Update ()
34 {
35 CheckInput ();
36 if (state == 0) {
37 SetActiveObjects (false, true, true);
38 }
39 if (state == 1) {
40 SetActiveObjects (false, true, false);
41 }
42 if (state == 2) {
43 SetActiveObjects (true, false, false);
44 if (cm.InstantiateDone) {
45 cm.UpdateChunkManager ();
46 }
47 }
48 }
49

50 /**
51 * **********************
52 * Activates and deactivates cam, menucam and music gameOjects
53 * **********************
54 **/
55 private void SetActiveObjects (bool cam, bool menuCam, bool

music)
56 {
57 this.cam.SetActive (cam);
58 this.menuCam.SetActive (menuCam);
59 this.music.SetActive (music);
60 }
61

62 /**
63 * **********************
64 * checks the input every frame in order to see if the "escape"

key was pressed, which changes the game state to 1 (pause
state)

65 * **********************
66 **/
67 private void CheckInput ()
68 {
69 if (state == 2) {
70 if (Input.GetKeyDown (KeyCode.Escape)) {
71 menuCam.transform.position = new Vector3 (cam.

transform.position.x, 40, cam.transform.
position.z);

72 state = 1;
73 }
74 }
75 }

4.4. STRUCTURE 43

As seen on page 40 when the GUI button labelled ”Generate World” from
the GUI manager was pressed, the StartGame() method was called. This
method calls the InitializeChunkManager(), which instantiate all the
chunk objects. On line 82, we also have a method for resetting the Chunk
Manager. We use the Reset() method to empty the world whenever a new
world needs to be created.

Listing 4.8: The Game Manager continued

77 /**
78 * **********************
79 * Method for resetting the chunkmanager
80 * **********************
81 **/
82 public void Reset ()
83 {
84 points = 0;
85 cm.collectedCoins.Clear();
86 cam.transform.position = new Vector3(0,4,0);
87 cm.ResetChunkManager ();
88 }
89

90 /**
91 * **********************
92 * Method to initialise the game
93 * **********************
94 **/
95 public void StartGame ()
96 {
97 cm.InitializeChunkManager ();
98 }

To clarify the three different states that the program can be in, we have created
an activity diagram of the users actions as seen on figure 4.5.

44 CHAPTER 4. IMPLEMENTATION OF SUROGOU

Figure 4.5: The states of the program

4.5 Rendering

The placement and update of the chunks are done in the Chunk Manager. A
chunk consists of a procedurally generated mesh and objects related to that
chunk, such as trees, rocks, fireflies and coins. As described in the last section,
the chunks are initialized when the ”Generate World” button is pressed. We
have made a sequence diagram which shows the initialization (see figure 4.6.
Furthermore, the UpdateChunkManager() is called once per frame, when
the program is in the in-game state (state = 2).

Listing 4.9: The Chunk Manager

29 public void InitializeChunkManager ()
30 {
31 Debug.Log ("InitializeTerrain started!");
32 camPos = mainCamera.transform.position;
33 tm = gameObject.GetComponent<TerrainManager> ();
34 tm.CreatePerlinNoise();
35 cList = new List<Chunk> ();
36 r_position_x = 0;
37 r_position_y = 0;
38 for (int z=0; z < tm.nChunks; z++) {

4.5. RENDERING 45

39 for (int x=0; x < tm.nChunks; x++) {
40 r_position_x = (int)(x * tm.chunkSize - tm.

chunkSize * 0.5f * tm.nChunks + camPos.x);
41 r_position_y = (int)(z * tm.chunkSize - tm.

chunkSize * 0.5f * tm.nChunks + camPos.z);
42 ChunkInstance = Instantiate (chunkPrefab) as Chunk;
43 ChunkInstance.InitializeChunk (new Vector3 (

r_position_x, 0, r_position_y), defaultMaterial
, tm, this, tm.nChunks);

44 ChunkInstance.terrainGo.transform.position = new
Vector3 (x * tm.chunkSize - tm.chunkSize * 0.5f

* tm.nChunks + camPos.x,0,z * tm.chunkSize -
tm.chunkSize * 0.5f * tm.nChunks + camPos.z);

45 ChunkInstance.GenerateChunk ();
46 cList.Add (ChunkInstance);
47 }
48 }
49 InstantiateDone = true;
50 Name ();
51 }

In order to instantiate the chunks we need to get the their initial x and z
position in the game world (lune 40 - 41). These positions are based by using
the position of the camera, which is attached to the Game Object representing
the player (camPos.x and camPos.z). We then create each chunk. This is
done by instantiating a prefab, which have the chunk scripts attached to it.
When the chunk is created, it is moved to their initial position in the game
world, and lastly it added to the list cList, holds all the chunks in the game
world. Figure 4.6 shows the initialization of the chunks.

46 CHAPTER 4. IMPLEMENTATION OF SUROGOU

Figure 4.6: Sequence diagram of the initialization of the chunks

Listing 4.10: The Chunk Manager continued

73 public void UpdateChunkManager ()
74 {
75

76 if (updateCount % updateFrequncy == 0) {
77 StartCoroutine ("UpdateChunks", 0.0f);
78 }
79 camPos = mainCamera.transform.position;
80 updateCount++;
81 }

When the Chunk Manager is initialized (instatiateDone), the
UpdateChunkManager() method is called from the Game Manager. In
order to get a smooth frames per second we have decided to utilize corou-
tines, when updating the chunks. This is done in UpdateChunks(). Using
coroutines works in the same manner as having a piece of code running in its
own dedicated thread. During the update we also use two parameters called
updateFrequency) and yieldFactor. The coroutine is only called when
updateCount % updateFrequency == 0. updateCount is a counter
which increases by one for each program cycle, whereas the updateFrequency
defines how often the UpdateChunks() should be called. This means that if
the updateFrequency is set to a value of 20 the coroutine is run at every
20 program cycle. The textttyieldFactor is used inside the coroutine. This

4.5. RENDERING 47

parameter is used to give up resources by telling the program to halt for a
specified amount of time by using the yield command on line 101.

Listing 4.11: The Chunk Manager continued

82

83 /**
84 * **********************
85 * Update Chunks
86 * **********************
87 **/
88 IEnumerator UpdateChunks ()
89 {
90 float delta = ((tm.chunkSize) * tm.nChunks) * 0.5f;
91 if(cList.Count > 0){
92 for (int i = 0; i < tm.nChunks*tm.nChunks; i++) {
93 float dist_z = camPos.z - cList [i].terrainGo.transform

.localPosition.z;
94 float dist_x = camPos.x - cList [i].terrainGo.transform

.localPosition.x;
95

96 if (dist_z > delta) {
97 Vector3 newPos = new Vector3 (cList [i].

terrainGo.transform.localPosition.x, 0,
cList [i].terrainGo.transform.localPosition
.z + delta*2);

98 cList [i].terrainGo.transform.position = newPos
;

99 cList [i].setPosition (newPos);
100 cList [i].UpdateChunk ();
101 yield return new WaitForSeconds (yieldFactor);

In order to move and update the chunk, as described on page 29 , we need to
calculate the distance between each chunk and the current player position and
store them in the two variables dist x and dist z (line 93 and 94). We then
check if the distance is above a certain threshold by comparing the delta with
the distance. On line 96, we can see the comparison in one of the directions.
delta is calculated by multiplying the number of chunks and the chunk size
divided by two, which represents the furthest distance from the player to the
border chunks as seen on figure 4.7.

48 CHAPTER 4. IMPLEMENTATION OF SUROGOU

Figure 4.7: delta = distance from player to border

If the distance is greater than the threshold delta in a given direction,
a new position, which is two times delta, is calculated and stored in the
variable newPos(line 97). We then move the position of the Game Object
(terrainGO on line 98), which have the mesh component attached to it and
the chunk itself on line 99. When the chunk have been moved, we recalculate
that chunk by calling the UpdateChunk() method (line 100). We then repeat
the same steps for the three other directions.

4.6. TERRAIN 49

Figure 4.8: Sequence diagram of the updating the chunks

On figure 4.8 the update of chunks is shown using a sequence diagram.

4.6 Terrain

When a chunk is created, the InitializeChunk() method in the chunk.
This works as a constructor, where variables are assigned. As previously men-
tioned, a chunk consists of a mesh and objects placed on that chunk. This
method is only called once when the world is generated.

Listing 4.12: The Chunk

52 /**
53 * **********************
54 * Instantiate the chunk
55 * **********************
56 **/

50 CHAPTER 4. IMPLEMENTATION OF SUROGOU

57 public void InitializeChunk (Vector3 position, Material
defaultMaterial, TerrainManager terrainManager,
ChunkManager chunkManager, int numberOfChunks)

58 {
59 terrainGo = new GameObject ("terrainMesh");
60 this.numberOfChunks = numberOfChunks;
61 this.tm = terrainManager;
62 this.cm = chunkManager;
63 this.pos = position;
64 this.defaultMaterial = defaultMaterial;
65 int numTris = terrainManager.chunkSize * terrainManager.

chunkSize * 2;
66 vsize_x = terrainManager.chunkSize + 1;
67 vsize_z = terrainManager.chunkSize + 1;
68 int numVerts = vsize_x * vsize_z;
69

70 // chunk objects
71 genericObjectList = new List<GenericObject> ();
72 coinList = new List<Coin> ();
73 fireFlyList = new List<FireFly> ();
74 rockList = new List<GenericObject> ();
75 treeList = new List<Tree2> ();
76

77 vertices = new Vector3[numVerts];
78 normals = new Vector3[numVerts];
79 uv = new Vector2[numVerts];
80 triangles = new int[numTris * 3];
81

82 mesh = new Mesh ();
83 texture = new Texture2D (vsize_x, vsize_z);
84 texture.wrapMode = TextureWrapMode.Clamp;
85 texture.filterMode = FilterMode.Bilinear;
86 }

In order to create a mesh we need a new Game Object named terrainGo
that we can use to attach the mesh data. We also need details about the
number of vertices and triangles. The number of triangles (line 65) in the
mesh is simply calculated by multiplying the chunkSize on each axis and
multiplying the result by two, as a face is constructed of two triangles. The
number of vertices (line 66-68) are always the chunkSize plus one on each
axis. This might seems strange, but one can think of a plane square mesh that
has the dimensions 1 x 1, which means that each axis has two vertices and not
one. We also need to create a number of lists for the objects (line 71-75). We
continue by creating a number of lists to hold the vertices, normals, uv and
triangles (line 77-80). Moreover, we create a new Mesh() object (line 82). As
every triangle consists of three vertices, we need to reserve space for numTris

* 3 in the triangles array (line 80). Lastly, we create the texture that can be
wrapped around the mesh (line 83-85). After the mesh has been initialised,
the GenerateChunk() is called.

Listing 4.13: The Chunk continued (GenerateChunk())

305 /**
306 * **********************

4.6. TERRAIN 51

307 * Generates a new game object with a mesh attached to it
308 * **********************
309 **/
310 public void GenerateChunk ()
311 {
312 GenerateChunkData ();
313 // Create a new Mesh and populate with the data
314 mesh.vertices = vertices;
315 mesh.triangles = triangles;
316 mesh.normals = normals;
317 mesh.uv = uv;
318 mesh.RecalculateBounds ();
319 //mesh.RecalculateNormals ();
320 mesh_filter = (MeshFilter)terrainGo.AddComponent (typeof(

MeshFilter));
321 mesh_filter.mesh = mesh;
322 mesh_collider = (MeshCollider)terrainGo.AddComponent (

typeof(MeshCollider));
323 mesh_collider.sharedMesh = mesh;
324 mesh_renderer = (MeshRenderer)terrainGo.AddComponent (

typeof(MeshRenderer));
325 mesh_renderer.material = defaultMaterial;
326 mesh_renderer.material.mainTexture = texture;
327 texture.Apply ();
328 }

On line 312 the GenerateChunkData() is called. This method, does not
only take care of calculating the position and heights of the vertices, but also
texturing and instantiation of the objects. Both heights, object distribution
and texturing are done using the perlin noise algorithms, as we will explain
later in this chapter. The calculated vertices, triangles, normals and uv are
assigned to the mesh and attached to the terrainGo object (314-326). Lastly,
we apply the texture to the mesh.

Listing 4.14: The Chunk continued (UpdateChunk())

330 /**
331 * **********************
332 * Updates the mesh
333 * **********************
334 **/
335 public void UpdateChunk ()
336 {
337 GenerateChunkData ();
338 mesh.vertices = vertices;
339 mesh.triangles = triangles;
340 //mesh.RecalculateNormals ();
341 mesh_collider.sharedMesh = null;
342 mesh_collider.sharedMesh = mesh;
343 mesh_filter.mesh = mesh;
344 mesh.RecalculateBounds ();
345 texture.Apply ();
346 }

52 CHAPTER 4. IMPLEMENTATION OF SUROGOU

The UpdateChunk(), works much like GenerateChunk(), but this time
only the calculated mesh data are assigned. Both the methods, as explain
before calls the GenerateChunkData().

Listing 4.15: The Chunk continued (GenerateChunkData())

268 /**
269 * **********************
270 * Generate a chunk (texture, objects, vertices, normals and UV)
271 * **********************
272 **/
273 private void GenerateChunkData ()
274 {
275 DestroyChunkObjects ();
276 for (int z=0; z < vsize_z; z++) {
277 for (int x=0; x < vsize_x; x++) {
278 float posOffset_x = ((x + pos.x) / scale);
279 float posOffset_z = ((z + pos.z) / scale);
280 float height;
281 height = tm.GetBiomes (posOffset_x, posOffset_z);
282 texture.SetPixel (x, z, tm.TerrainColor (

posOffset_x, posOffset_z));
283 PlaceObjects (posOffset_x, posOffset_z, height);
284 vertices [z * vsize_x + x] = new Vector3 (x, height

, z);
285 normals [z * vsize_x + x] = Vector3.up;
286 uv [z * vsize_x + x] = new Vector2 ((float)x /

vsize_x, (float)z / vsize_z);
287 }
288 }

First of all, we clear the list of objects by calling the DestroyChunkObjects().
For every position, we get back the height for a position in the game world
by calling the GetBiomes() method. The same position is used for getting
the color pixel for the texture and also to see if any objects should be placed
on that position. We also calculate the vertices, normals and uv for the mesh.

Listing 4.16: The Chunk continued (GenerateChunkData())

290 for (int z=0; z < tm.chunkSize; z++) {
291 for (int x=0; x < tm.chunkSize; x++) {
292 int squareIndex = z * tm.chunkSize + x;
293 int triOffset = squareIndex * 6;
294 triangles [triOffset + 0] = z * vsize_x + x + 0;
295 triangles [triOffset + 1] = z * vsize_x + x +

vsize_x + 0;
296 triangles [triOffset + 2] = z * vsize_x + x +

vsize_x + 1;
297

298 triangles [triOffset + 3] = z * vsize_x + x + 0;
299 triangles [triOffset + 4] = z * vsize_x + x +

vsize_x + 1;
300 triangles [triOffset + 5] = z * vsize_x + x + 1;
301 }
302 }
303 }

4.6. TERRAIN 53

Furthermore, we need to calculate the triangles for the mesh. The triOffset
is constructed using the squareIndex, which allows us to populate every
triangles data. Every plane is made of two triangles A and B 4.9, which is why
we need to assign six vertices.

Figure 4.9: Diagram of two triangles

In every for loop, we construct two triangles. In the example on the fig-
ure 4.9, texttttriOffset will be equal to zero, vsize x will be equal 2 and our
coordinates z and x will be equal to 0.

54 CHAPTER 4. IMPLEMENTATION OF SUROGOU

• triangles [0] = z * vsize x + x + 0 = 0

• triangles [1] = z * vsize x + x + vsize x + 0 = 2

• triangles [2] = z * vsize x + x + vsize x + 1 = 3

• triangles [3] = z * vsize x + x + 0 = 0

• triangles [4] = z * vsize x + x + vsize x + 1 = 3

• triangles [5] = z * vsize x + x + 1 = 1

triangles [0], corresponds to node 0 (in figure 4.9), while triangles
[1] corresponds to node 2 and so on. The triangles are constructed in a
counter-clockwise order. The first triangle therefore is constructed of the nodes
0→ 2→ 3 and the second triangle of the nodes 0→ 3→ 1.

4.7 TerrainManager

The Terrain Manager, which is used extensively throughout the GenerateChunkData()
contains all the methods, which returns data in the form of heights from the
perlin noise algoritmes. When the game is started, the Start() method
creates 15 perlin noise objects, each with a unique seed, which are used to
create the permutation table in the perlin noise. This means, that 15 different
permutation tables are created, which can be used in the Terrain Manager.

Listing 4.17: The Terrain Manager (Start())

18 public void CreatePerlinNoise(){
19 for (int i = 0; i < 15; i++) {
20 perlinNoise [i] = new PerlinNoise (seed + i);
21 }
22 }

In order to illustrate how the perlin noise is used, we can look at the method
for creating biomes, which can be seen on figure 4.10.

4.7. TERRAINMANAGER 55

Figure 4.10: Biome types using perlin noise

The call for the method to get heights is done on line 281 in the Chunk
scripts GenerateChunkData().

Listing 4.18: The Chunk continued (GenerateChunkData())

281 height = tm.GetBiomes (posOffset_x, posOffset_z);

As we can see this is done in the method GetBiomes(posOffset x,posOffset z)
in the Terrain Manager. The posOffset x and posOffset z represent ab-
solute coordinates in the game world, which means that the value can be pos-
itive, negative or null, depending on the players position. In listing 4.20, the
code for the GetBiomes() can be seen.

Listing 4.19: The Terrain Manager (GetBiomes ())

216 public float GetBiomes (float pos_x, float pos_z)
217 {
218 float biomeNoise = perlinNoise[1].FractalNoise2D (new Vector2 (

pos_x, pos_z), 8, 0.01f, 2f, 0.5f, 4f);
219 float elevationNoise = perlinNoise[9].FractalNoise2D(new

Vector2(pos_x,pos_z),8,0.012f,3f,0.1f,128);
220 int type = (int)(biomeNoise) + 4;
221 if (type < 0.5f) {
222 returnType = 0;
223 biomeNoise = SeaBiome (pos_x, pos_z);
224 }
225 if (type == 1) {
226 returnType = 1;
227 biomeNoise = SeaBiome (pos_x, pos_z);
228 })

On line 218 the variable biomeNoise uses the FractalNoise2D() of one of
the perlin noise objects. The arguments to control in the method are the follow-
ing Vector3 point, int octaves, float frequency, float lacunarity,
float persistence, float gain. The parameter type use the biomeNoise

56 CHAPTER 4. IMPLEMENTATION OF SUROGOU

value in order to choose which of the 8 biome types it should use for the
biomeNoise. That means that it can produce 8 different biomes types. As
we want to create islands, and as the distribution of values are often closer to
median value, the border values (0,1,6,7 and 8) creates a biome type, which
works as a sea biome. If we would like to have more biomes, one could simply
scale this number in order to return more biome types. The size of the biomes
can be influencing by changing the frequency parameter. In order to create
a natural transition between the different biome types, we use utilize the vari-
able elevationNoise on line 219. This method serves as a control of the
elevation of the whole world, and therefore creates a more smooth transition
between the biomes. On figure 4.13 the result can be seen.

Figure 4.11: biomeNoise Figure 4.12: elevationNoise

Figure 4.13: biomeNoise +
elevationNoise

Listing 4.20: The Terrain Manager continued (GetBiomes ())

229 if (type == 2) {
230 returnType = 2;
231 biomeNoise = HillBiome (pos_x, pos_z);
232 })

4.7. TERRAINMANAGER 57

To further give an example of how the biomes work, we will look at line
229, where the type parameter is equal 2, which means that the HillBiome
method is used for retrieving height for that position. This method can be seen
on listing 4.21.

Listing 4.21: The Terrain Manager (HillBiome ())

202 public float HillBiome (float pos_x, float pos_z)
203 {
204 float noise = perlinNoise[14].FractalNoise2D (new Vector2 (

pos_x, pos_z), 4, 0.01f, 2f, 0.5f, 15f);
205 float noise2 = perlinNoise[1].FractalNoise2D (new Vector2 (

pos_x, pos_z), 8, 0.5f, 3f, 0.23f, 3f);
206

207 return (noise + noise2);
208 })

This HillBiome uses two perlin noise objects. noise one can be described as
being responsible for the overall shape of the terrain, whereas noise2 can be
described as being smaller features in the terrain. This biome, illustrates how
we can add several perlin noise algoritmes in combination in order to create
more complex terrain features.

Figure 4.14: HillBiome() Figure 4.15: GrandBiome()

Figure 4.16: SwampBiome() Figure 4.17: CoastBiome()

58 CHAPTER 4. IMPLEMENTATION OF SUROGOU

In the same manner as creating heights for the terrain, we can also use the
perlin noise to texture the terrain while also use it to distribute object in the
game world. When texturing, we use the values for colors instead of height.

4.8 Perlin Noise implementation

Our implementation of perlin noise is, as mentioned earlier, based on Jasper
Flicks [6], who have written a tutorial on how to create a noise algorithms in
the Unity. The algorithms is therefore implemented as described in the Terrain
Modelling (p. 16) section. We have extended his implementation, to be able
to create a permutation table based on the world seed. As mentioned before,
the world seed is feed into the perlin noise, when the object is created. As
mentioned earlier the permutation has 511 values ranging from and 0 - 255
values, which are then shuffled randomly in order to give the illusion of being
random.

Listing 4.22: Perlin Noise (PerlinNoise())

6 const int SIZE = 511;
7 private int[] perm = new int[SIZE + SIZE];)

Listing 4.23: Perlin Noise (PerlinNoise())

26 public PerlinNoise (int seed)
27 {
28 UnityEngine.Random.seed = seed;
29

30 int i, j, k;
31 for (i = 0; i < SIZE; i++) {
32 // creates 0 - 255
33 perm [i] = i;
34 }
35

36 while (i > 1) {
37 i--;
38 k = perm [i];
39 j = UnityEngine.Random.Range (0, SIZE);
40 perm [i] = perm [j];
41 perm [j] = k;
42 }
43

44 for (i = 0; i < SIZE; i++) {
45 perm [SIZE + i] = perm [i];
46 }
47 })

On line 31 - 34 the 255 values are created for the permutation table. We then
shuffle these values, using the world seed as a seed for the random number
generator (line 38). Lastly, we copy the first half of the permutation table to
the second half. This means that index 0 - 255 have the same value as index
256 - 511. This might seem strange at first, but as we need to add both x and

4.9. OBJECTS AND DISTRIBUTION 59

y position together when looking up the values in the permutation table, which
can get out of bound. One way of solving this would be to do some kind of
index wrapping but one could also simply solve this by doubling the size of the
permutation table and copy the first half to the second.

4.9 Objects and distribution

The objects that can be created are on a chunk are the following: trees, rocks,
fireflies and coins. In order to distribute objects these object in the world
we can utilize the perlin noise algorithm. By using a threshold value, we can
determine how often an object should be created in the game world. To give an
example, we can see how rocks are distributed in the game world. This is done
in the PlaceObjects() method with is a part of theChunk(). The perlin noise
used for distribution of rocks is the RockDensity() method in the Terrain
Manager.

Figure 4.18: x− axis = position, y − axis = value

Listing 4.24: Chunk (PlaceObjects() (rocks))

258 float rockDensity = tm.RockDensity (px, pz);
259 if (rockDensity > 0.5f && rockList.Count < 1 && height

> 0f && tm.GetBiomeType () == 4) {
260 Random.seed = (int)(px * pz);
261 float yRotation = Random.Range (0, 360);
262 GenericObject rock1 = Instantiate (tm.rock, new

Vector3 (px * scale, (height), pz * scale),
Quaternion.Euler (new Vector3 (-90, yRotation,
0))) as GenericObject;

263 rock1.transform.renderer.material.color = tm.
TerrainColor (px, pz);

264 rockList.Add (rock1);
265 })

The rockDensity, returns a float between -1 and 1. If the value is greater
than 0.5f, a rock will be created on that chunk. This value therefore represents
a threshold. If we wanted to have fewer rocks, we would lower the threshold

60 CHAPTER 4. IMPLEMENTATION OF SUROGOU

and if we would like to have more rocks, we would increase the threshold.
We can also, choose which type of biome, rocks should be created by using
theGetBiomeType(). As we can see on line 259, rocks will only be created
if the biome is of the type 4, which refers to the GrandBiome(). We can
also use more conditions such as using the height of the terrain. As we will
only have rocks to appear above water level (with is 0), we check if theheight
of the terrain is greater than 0. The placement of trees, works in the same
manner.

4.9. OBJECTS AND DISTRIBUTION 61

Listing 4.25: Chunk (PlaceObjects() (trees))

196 float treeDensity = tm.TreeDensity (px, pz);
197 if (treeDensity > 0.6f && treeList.Count < 1 && height

> 1f && height < 5f && px != 0 && px != 0) {
198 Tree2 treeInstance = Instantiate (tm.tree) as Tree2

;
199 int seed = (int)(px * pz);
200 Random.seed = seed;
201 float yRotation = Random.Range (0, 360);
202

203 switch (tm.GetBiomeType ())
204 {
205 case 0 : treeInstance.SetupCone (seed,20,0.0f,1.4

f,10,10);
206 break;
207 case 1 : treeInstance.SetupCone (seed,15,9.0f,1.0

f,2,2);
208 break;
209 case 2 : treeInstance.SetupCone (seed,7,16.0f,1.0

f,8,2);
210 break;
211 case 3 : treeInstance.SetupCone (seed,15,16.0f

,1.0f,10,2);
212 break;
213 case 4 : treeInstance.SetupCone (seed,15,5.0f,1.0

f,3,2);
214 break;
215 case 5 : treeInstance.SetupCone (seed,15,4.0f,1.0

f,5,2);
216 break;
217 case 6 : treeInstance.SetupCone (seed,12,16.0f

,1.0f,1,2);
218 break;
219 default : treeInstance.SetupCone (seed,15,4.0f

,1.0f,5,2);
220 break;
221 }
222

223

224 treeInstance.CreateMesh ();
225 treeInstance.renderer.material.color = tm.

TerrainColor (px, pz);
226 treeInstance.plane.transform.position = new Vector3

(px * scale, (height - 1), pz * scale);
227 treeInstance.plane.transform.rotation = Quaternion.

Euler (new Vector3 (0f, yRotation, 0f));
228 treeList.Add (treeInstance);
229 })

In order to create the same tree every time, we use the position as a seed for
the random number generator in the tree algorithm, as we will explain later.
Furthermore, we use the GetBiomeType() in order to create different types
of trees in the individual biomes, as seen on line 203 - 221.

62 CHAPTER 4. IMPLEMENTATION OF SUROGOU

4.10 L-System implementation

As mentioned in the L-system trees section on page 31, we wanted to have pro-
cedural trees in the game. This proved to be a challenge which is why decided
to use an existing implementation of L-System trees, which is done by Chan-
fort [3]. Therefore, we will not take the credits for the part of the game and nei-
ther explain the implementation and detail. That said, we have taken the lib-
erty to alter the code slightly in order to make the algorithm more controllable.
The original code can be found at the unity forum: http:// forum.unity3d.com/
threads/ l-systems-for-unity-free-script-included.272416/

Furthermore, we have chosen to implement 6 parameters in order to add con-
trollability to the implementation.

Listing 4.26: Controllability of the trees

61 /***************
62 * Controllabilty
63 **************/
64

65 public int numberSegmentsOrigin = 15; //Number of maximum
segments = number of iterations

66 public float coeffAngleBranch = 4.0f; //Coeff Angle Branch
67 public float coeffBranchPossibility = 1.0f; // Coeff Branch

Possibility
68 public int numberSegmentTrunk = 5; // Number of segment for the

trunk
69 public int numberSegmentFirstBranch = 2; // Number of segment

before the first branch

• seed is used for the number generator in the tree algorithm, which allows
to create the same tree at a specific position.

• numberSegmentsOrigin control the number of iteration in the algo-
rithm. As the number of vertices grows exponentially at each iteration,
it is important to keep this parameter low, as performance is greatly
reduced when a lot of vertices has to be created.

• coeffAngleBranch controls the angles of the branches.

• coeffBranchPossibility controls the number of branches. By de-
fault, this coefficient is 1. If the parameter is greater, the probability to
create new branches will be less.

• numberSegmentTrunk controls when the tree should begin to curve. If
the value is low, it will begin to curve at the trunk of the tree.

• numberSegmentFirstBranch controls, at which iteration the first
branch should be created.

4.11. COLLECTION OF COINS 63

Those parameters enable a large control of the L-System trees and will be
used to produce different kind of tree depending on the type of their environ-
ment. This is done so the type of biome can have influence the generation of
the trees in this precise area of the world.

4.11 Collection of coins

As it is mention earlier, the player can collect coins in the game world. We
added this feature in order to test how, we could store changes to the world.
The distribution of coins is done in the same manner as rocks and trees, so
whenever a coin is collected, it should not be created again. In order to do this,
we decided to store all the positions of coins that had been collected. The code
for collecting coins can be seen on listing 4.27 in the script PlayerCollision
which is attached to the Game Object, represented by the player.

Listing 4.27: PlayerCollision

4 public class PlayerCollision : MonoBehaviour
5 {
6 public GameManager gm;
7 private PlayerSound ps;
8 Vector3 chunkPosition = new Vector3 (0, 0, 0);
9

10 /**
11 * **********************
12 * Initialization
13 * **********************
14 **/
15 void Start ()
16 {
17 ps = gameObject.GetComponent<PlayerSound> ();
18 }
19

20 /**
21 * **********************
22 * Used for collecting coins
23 * **********************
24 **/
25 void OnControllerColliderHit (ControllerColliderHit hit)
26 {
27 if (hit.gameObject.name == "terrainChunk") {
28 chunkPosition = hit.gameObject.transform.position;
29 }
30

31 if (hit.gameObject.name == "Coin(Clone)") {
32 gm.AddPoints (1);
33 gm.CollectCoin (chunkPosition);
34 ps.PlayCoinSound ();
35 Destroy (hit.gameObject);
36 }
37 }
38 }

64 CHAPTER 4. IMPLEMENTATION OF SUROGOU

The OnControllerColliderHit is called whenever the player is colliding
with another Game Object, such as a terrainChunk object or a Coin Object.
When the player collides with a Coin Object the position of the Chunk, where
the coin was collected is stored. We also add a point to the player’s scoreboard
and destroys the coin.

Listing 4.28: The Game Manager (CollectCoin())

136 public void CollectCoin (Vector3 pos)
137 {
138 cm.collectedCoins.Add (pos);
139 }

Listing 4.29: The Chunk Manager (collectedCoins)

17 public List<Vector3>
18 collectedCoins;

Whenever, we want to create a coin we therefore just need to check if the coin
has already been collected on that chunk. This is done in the PlaceObjects()
method in the Chunk.

Listing 4.30: Chunk (PlaceObjects())

238 float coinDensity = tm.CoinDensity (px, pz);
239

240 if (coinDensity > 0.8f && coinList.Count < 1 && height
> 0.1f && height < 4f) {

241 bool alreadyCollected = false;
242

243 for (int i = 0; i < cm.collectedCoins.Count; i++) {
244 Vector3 c = cm.collectedCoins [i];
245 if (c.x == terrainGo.transform.position.x && c.

z == terrainGo.transform.position.z) {
246 alreadyCollected = true;
247 break;
248 }
249 }
250 if (!alreadyCollected) {
251 Coin coin = tm.coin;
252 coin.gameObject.name = "Coin";
253 coinList.Add (Instantiate (coin, new Vector3 (

px * scale, (height + 1), pz * scale),
Quaternion.identity) as Coin);

254 }
255 }

By comparing the stored position in collectedCoins with the terrain object
(TerrainGo) we can see if the coin, on that chunk, at that position have
already been collected.

Chapter 5

Test and Analysis of Surogou

In this chapter we will test the requirements, first mentioned in design chapter.
It will also serve as a chapter for pointing out bugs and other known issues.
Performance refers to the actual performance of the Surogou, which is achieved
by running the game on different systems and with different configurations. For
the purpose of these performance tests, a special version of the Surogou will
be used, that can record frames per second. The data from these test is then
analyzed in order to give a perspective on how well the program performs and
also gives a perspective on how performance can be improved in future version
of the Surogou. We will also be testing if the game world is consistent and the
controllability of our procedural methods. We will look into the consistency to
see if the same game world is generated using the same world seed, and if coins
are properly collected. To test the controllability of our procedural algorithms,
we have created a special version of the game. In this version, the parameters
for the algorithms can be changed instead of the draw distance slider in the
normal version. The instruction to run these programs can be found in the
appendix on page B. The result of this chapter is discussed further in the
discussion chapter.

5.1 Performance

The performance section will be divided into four tests, where the performance
is by the number of frames per second (FPS), as well as the overall stability
of frames per second. The first test focus on how the program performs on
different systems, whereas the second test look into how chunk sizes and the
total number of chunk to be generated affects the performance. The third test
focus on how much our initial efforts of optimization affects the performance.
In the fourth test we investigate how much the procedural tree generation
affects the performance and also compare how performance-drops relate to the
number of objects created in the game world. The duration of each test is 30
seconds. We have chosen to sample at every 1/10th of a second, which makes
up a total of 300 samplings for each test. An universal anomaly was discovered

65

66 CHAPTER 5. TEST AND ANALYSIS OF SUROGOU

in the first two samples (0.0 and 0.1 seconds) in every test. Because of this, we
decided not to include these samples in our average, minimum and maximum
FPS tables.

First performance test

In order to get an idea of how the Surogou performs on different systems, we
ran the game on three computers. In order to make the test comparable, we
used the same configuration on each computer. The configuration for this test
was as following:

chunkSize 6
numberOfChunks 24
updateFrequency 20
yieldFactor 0
vertices 20736

Figure 5.1

The amount of vertices are only related to the actual terrain and is not
counting objects, such as rocks and trees.

Figure 5.2

If we look at the three systems (figure 5.2), it is obvious that the hardware
has a lot of influence on how the Surogou performs. It is self-explanatory that
the drops indicate that more CPU power is needed when rendering frames at
that moment, whereas the high values show little CPU computation. The dark
blue graph, which is PC 1, shows the highest capability, while the CPU load
is low and had an average FPS of 195. It also had the largest drops in FPS in
relation to the other computers drops. The grey graph, which is PC 2, had an

5.1. PERFORMANCE 67

average FPS of 146, while the drops from high to low were not as significant as
PC 1. PC 3, which is the light blue graph, clearly was the slowest of the three,
with an average FPS of 54. PC 1 has the highest peaks and drops compared
by overall performance on the three PC systems.

PC 1 2 3
Average FPS 195 146 54
Minimum FPS 60 30 17
Maximum FPS 271 196 87

Figure 5.3

Even though there is a huge difference in the lowest and highest recorded
FPS at PC 1 it was not noticeable, as the lowest FPS was high enough to give
a fluent gameplay experience. PC 3 though was not performing well consider-
ing the low FPS, however the test revealed that there was no halting (lagging)
during the run-through. By going through these results we chose to do per-
formance test two, three and four on PC 1. Additionally we believe that PC
1 will be the best example for showing an improvement on the performance
when we compare results.

Second performance test

The purpose of this test is to see how the program performs when switching
between larger and smaller chunks while also changing the amount of chunks to
be generated. In order to compare the results each configuration have the same
amount of vertices in the terrain. This is done by multiplying the chunkSize
and numberOfChunks which always results into the same amount of vertices.
When the configuration uses a high number of chunks with small size, there
will be many terrain updates. When the configurations has a low number of
chunks with a large chunk size there will be less terrain updates. However,
the number of vertices that needs to be moved and recalculated for each chunk
will be greater. We chose to run this through six configurations. The different
configurations are as following:

Configuration 1 2 3 4 5 6
chunkSize 1 2 4 8 16 32
numberOfChunks 128 64 32 16 8 4

Figure 5.4

Furthermore, the yieldFactor was 0, while the updateFrequency was
20. We also decided to divide the testresults of the configurations into two
graphs to avoid cluttering of the data.

68 CHAPTER 5. TEST AND ANALYSIS OF SUROGOU

Configuration 1 2 3
Average FPS 22 33 126
min FPS 15 19 16
max FPS 26 46 176

Figure 5.5

The blue graph (figure 5.5), which is configuration 1, shows low FPS through-
out the test compared to the others and had an average of 22 FPS. We noted
that the loading time was long (the initialization of the terrain) and the chunks
was not moving fast enough for the camera to follow, which lead to the cam-
era (player) moving past the game world. Additionally, we noted that objects
such as trees, rocks and coins was not generated. However, the FPS remained
stable with the highest reading being 26 and the lowest 15, which still lead to
a less fluent experience. The yellow graph (figure 5.5), which is configuration
2, shows a better overall performance. During this test objects were created as
opposite to configuration 1. The average FPS was 33, while the highest was 46
and the lowest was 19. The green graph (figure 5.5), which is configuration 3,
shows a slight increase in performances. The lowest recorded FPS was 16 and
the highest was 176, while the average FPS was 126.

5.1. PERFORMANCE 69

Configuration 4 5 6
Average FPS 340 542 650
min FPS 16 41 18
max FPS 425 629 718

Figure 5.6

The dark blue graph (figure 5.6), shows the test with configuration 4. In this
test the performance were further increased, while there is performance-drops
which goes as low as 41 FPS. A pattern begin to appear through all the config-
urations, where the performance get higher but the drops, when compared to
the average FPS, becomes increasingly significant. On the test of configuration
6 the drops was recorded as low as 18 FPS, which makes this configuration one
of the least fluent experience, with the largest drops compared to the average
FPS.

It is obvious that using smaller chunks, will result in generating more
chunks. If the chunks are large, more computations are needed when mov-
ing the chunks. Looking at the chunkSize and numberOfChunks between
configuration 1 and 6, it is evident that when chunkSize is high and the
numberOfChunks to be generated is low, the possibility of high performance
is unlikely, if not impossible. However, when looking at the data, which can
be seen in figure 5.6 and 5.5, configuration 6 also had a biggest drops in per-
formance. Therefore it is clear that having the configuration with the high-
est possible FPS is not necessarily the configuration that is most suitable for
playability. Furthermore, it is also clear by looking at figure 5.6 that when
numberOfChunks is low and chunkSize is high the computer takes massive
performance-drops. Additionally, configuration 4 to 6 has a hard time loading
the initial objects seen by the first 0.5 seconds in the figure. It is also clear
that the three most suitable configurations are 3, 4 and 5, where configuration
4 has the most stable FPS during the test, in relation to the others. This is

70 CHAPTER 5. TEST AND ANALYSIS OF SUROGOU

evidence of a balanced configuration between the two parameters, where the
numberOfChunks is 16 and the chunkSize is 8 (for PC 1). Additionally,
configuration 3 had performance issues that caused the game to halt, gener-
ate objects and then proceed, while configuration 2 rarely created any objects
within the game world. When, we conducted the tests we noted how many
objects were generated. In some instances like configuration 1 there as no ob-
jects generated at all. In configuration 2 and 3 it started to make objects and
configuration 4 had the highst amount of objects within the game world, while
configuration 5 and 6 decreased the amount of objects that was generated. In
the fourth test, we will go further into this.

After the initial test we decided to see if we could eliminate the drops, by
using a higher value for the yieldFactor, which was initially 0. Figure 5.7
shows configuration 4 with an altered yieldFactor of 2 and 4 compared to
the original. The purpose of these two additional tests is to understand how the
yieldFactor affects the performance and especially how it compares to the
performance of configuration 4. Since the yieldFactor is a timer that delays
the routine that moves chunks from the back position to the forward position,
our theory was that an increase of the delay from 0 to 2 will proximately cut
the number of drops in performance by half.

yieldFactor 0 2 4
Average FPS 343 348 346
min FPS 16 218 218
max FPS 434 427 435

Figure 5.7

The results of changing the yieldFactor is clearly improves the perfor-
mance, as seen on figure 5.7. By looking at the graph, it is clear that setting
the yieldFactor to a greater value than 0 can indeed eliminate the most

5.1. PERFORMANCE 71

of the performance drops, which happens when terrain is updated. The data
in figure 5.7 shows there is a tendency to be a few differences in FPS when
the yieldFactor changed. However, when it comes to the lowest FPS the
yieldFactor has increased performance in terms of being more stable dur-
ing the time of the test. Our reason for implementing the yieldFactor was
originally to create a more stable performance, however we did not anticipate
the amount of stability it resulted in. As it was explained earlier we expected
about half of the drops in FPS to be gone, yet it seems the yieldFactor
cuts the difference between the highest and the lowest FPS in half. It is also
interesting to note that the difference from a yieldFactor of 2 and 4 does
not affect performance by any significance.

Third performance test

During our third performance test we also focused on how to improve per-
formance but this time the focus was on the updateFrequency parameter.
Specifically the updateFrequency determines when the UpdateChunks()
method should be called. The UpdateChunks() method is used for moving
and recalculating chunks (terrain) in the game world. So if the
updateFrequency is set to 5 it would mean the UpdateChunks() method
would only be called every 5th frames. This test had the configuration: chunkSize
= 6, numberOfChunks = 24 and yieldFactor = 0.

updateFrequency 0 5 20
Average FPS 193 200 200
min FPS 43 78 91
max FPS 255 270 273

Figure 5.8

The blue graph shows the UpdateChunks() when it is called at every

72 CHAPTER 5. TEST AND ANALYSIS OF SUROGOU

program cycle, and have some drops in the performance. The green graph,
which is the test with an updateFrequency of 5, shows that these drops are
considerably less when compared to calling the UpdateChunks() at every
program cycle. The last test, which is presented as the red graph, with an
updateFrequency of 20, shows additional improvement by looking at the
lowest recorded FPS which was 91. The interesting part about the results
from this test is that the updateFrequency, much like the yieldFactor,
increases the FPS on the lower end. From an updateFrequency of 0 to 5 the
lowest FPS is increased from 43 to 78 FPS. Additionally from an
updateFrequency of 5 to 20 there is an increase from 78 till 91 FPS, while
the average and maximum FPS varies a little from an updateFrequency
of 0 till 20. This indicates that the updateFrequency has an affect on the
performance similar to the yieldFactor, however it is not as big.

Fourth performance test

The purpose of the forth performance test was to investigate at what de-
gree of impact the generation of trees had on performance. The parameters
for these tests were done with the following configuration: chunkSize = 4,
NumberOfchunks = 32, yieldFactor = 2 and updateFrequency = 20.

Trees Yes No
Average FPS 152 163
min FPS 68 96
max FPS 213 220

Figure 5.9

On figure 5.9, the result of the fourth test can be seen. The orange graph
show the test with trees, while the grey graph show the test without trees. We

5.1. PERFORMANCE 73

can notice that the performance without the trees are slightly better. Moreover,
we can see some distinct drops in the graph which refers to moments when the
game needs to generate a lot of trees. So we can deduce that trees got an
impact on the performance of the game which can be quantified depending of
the number of the trees generated. Furthermore, we will investigate if the total
number of objects created in the game world got an impact on the performance.
It was done by using configuration 5 and counting the amount of objects that
was created at each sampling. This shown in the following figure5.10:

Figure 5.10

The orange graph on figure 5.10 shows the FPS divided by 100 from the
test on configuration 5 and the blue graph shows the amount of objects created
on each sampling. The FPS is divided in order to see a relation between the
drops in FPS and the number of objects created. The graph shows a clear
relationship between the drop of FPS when a big amount of objects are being
generated. It is evident that whenever there is a big drop in the performance
there is a big amount of objects being generated at the same time.

Configuration 1 2 3 4 5 6
Initial 0 67 44 40 30 18
SUM 0.1-14.9 0 43 58 55 43 27
SUM 15-29.9 0 49 62 48 37 24
SUM 0 159 164 143 110 69

Figure 5.11

As it is shown in figure 5.11 there is a difference between how many objects,
such as tree, rocks, coins and fireflies, are generated in each of the tests using
the same configurations. To understand the figure better we refer to figure 4.4
which explains the mechanism of generating new objects. The initial generation
is when the game world starts up, whereas the next set of sums, show how
many objects were generated afterwards. While the chunks are being moved
from the back to the forward positions, the objects from the back positioned

74 CHAPTER 5. TEST AND ANALYSIS OF SUROGOU

chunk will be removed from the game world. This means that the sum of all
objects shown in figure 5.11 is not the amount of objects at the end of the test.
However, by looking at the results it is evident that the chunkSize is the
main determinant for how many objects are created in the game world. Our
reason for claiming this is that in configuration 1 there is 128 chunks in the
game world but there is no objects, while the size of each chunk is 1. Now
moving from configuration 2 till 6 the number of chunks is halved every time
and the number of objects increase from configuration 2 till 3. However, The
size of chunks do increase which indicates that the chunkSize parameter is
a determinant for how many objects that is created. Additionally the amount
of objects generated decrease through configuration 4, 5 and 6 which indicate
that the amount objects that will be generated is also linked to the number of
chunks (numberOfChunks) in the game world.

5.2 Consistency

In order to see if the world seed actually generate the same game world, we
have constructed a consistency test. To do this, we implemented two test with
the same world seed, took a screenshot for each test and compared them to see
if there were any differences. In both test we used the same world seed ”my
cool world”, which should result in generating the same world. The screenshots
can be seen on figure 5.12.

Figure 5.12

As it is seen, the two screenshots looks identical. To further prove this, we
made a test which recorded the positions of each tree, coin, rock and fireflies
with the two seeds 345 and 666 two times each. This resulted in two sets
of two recordings where each set of recordings had identical positions of each
object that was created. These tests also proved to be identical, but we have
chosen not to include the data as it does not make any sense to show two sets
of two recordings of identical data. We did however, observe an issue with the
consistency, if we were using the same world seed with different chunk sizes, as
seen on figure 5.13

5.3. CONTROLLABILITY 75

Figure 5.13

We used chunkSize = 4 (A), chunkSize = 5 (B), chunkSize = 6 (C)
and chunkSize = 12 (D). By comparing screenshot A, B, C and D one can
see that more trees are being generated as the chunkSize increases. Which
shows signs of inconsistency. Our distribution of trees is done with perlin noise
which should ensure the consistency. However, when we change the chunk size,
the distribution on the chunks will also change because there is more space to
distribute the objects on each chunk. Therefore, this results in an inconsistent
world using the same world seed. Furthermore, we tested whether a collected
coin would appear again if the player were to revisit the position of the collected
coin. The results was that the coins were not generated again after it had been
collected. We therefore concluded that the implementation of storing coins is
consistent.

5.3 Controllability

The controllability does not refer to the players control, but rather the develop-
ers control of the procedural methods also explained in chapter 2 about Degree
& Dimensions of control. From the developer’s perspective, the two main pro-
cedural algorithms that was implemented should be capable of creating a wide

76 CHAPTER 5. TEST AND ANALYSIS OF SUROGOU

range of different content. We tested our perlin noise algorithm as well as the
L-system, that generate trees.

Perlin noise

In order to investigate how we could create different landscapes, we made a
special version of the game where the user can configure the parameters of
perlin noise.

• Octaves, is the number of iterations which creates a fractal pattern.

• Frequency, is the frequency of the noise.

• Lacunarity, ia a parameter which increases frequency at each octave.

• Persistence, is a parameter which amplitudes at each octave.

• Gain, which controls the maximum and minimum amplitude.

• Type, is either 0 (perlin noise) and 1 (value noise).

The following pictures, show how it is possible to create different content, just
by changing the parameters for the coherent noise algorithm. The program
”coherent noise tester” is attached in the appendix on page ??.

Figure 5.14: Configuration of perlin
noise

Figure 5.15

Figure 5.16 Figure 5.17

5.3. CONTROLLABILITY 77

Figure 5.18 Figure 5.19

Figure 5.20 Figure 5.21

It is evident that the coherent noise are capable of creating a wide range of
content.

Tree-test

The purpose of the tree-test is similar to the previous controllability test.
Through this test we focus on the degree & dimensions of control with regards
to the L-systems (p. 31). In order to do this, we have tested six parameters,
which allow us to control how a tree should be generated (p. 62). The param-
eters for the tree is described on page 62. We have taken several screenshot in
order to illustrate how the parameters can be used to create a wide range of
trees.

78 CHAPTER 5. TEST AND ANALYSIS OF SUROGOU

Figure 5.22 Figure 5.23

Figure 5.24 Figure 5.25

As seen in the pictures, our modification of Chanfort [3] L-Trees are indeed
capable of a wide range of different types of trees.

5.4 Bugs and known issues

As a result of these tests, we identified a wide range of issues, which we decided
to address. We managed to boost the performance by a factor of approximately
80 %, as we have made an error in perlin noise algoritmes, which meant that
the permutation table was recalculated each time it returned a value. We
also found a bug, which resulted in several identical objects being created at
the same position. The reason was that a chunk could create a tree on its
border vertex. This means that two trees would be generated on the same
place, but on two adjacent chunks. The fix for this was to avoid objects being
created on the border vertices of the mesh. This bug fix also is the reason why
there were no object created, when the chunkSize is one, as every vertex is a
border vertex. Furthermore, it is also the reason why the number of objects
differs, when using different sizes of chunks. The solution to this is to have a

5.4. BUGS AND KNOWN ISSUES 79

fixed chunkSize, where only the number of chunks can be changed. The draw
distance slider in the title screen is therefore directly linked to the number of
chunks in the game world.

Chapter 6

Discussion

This chapter focuses on our testresults by discussing the data and observations
in reference to our requirements Performance, Consistency, Controllability and
Inifinity. Furthermore, we discuss the topics of alternative methods we could
have used for updating terrain and other ways we could have stored data as
well as what data that is most relevant to store.

As it is seen in the Testing Chapter 5 we have four different performance
tests. In the following discussion of the performance we will our findings,
specifically focus on how we can create the most optimized setup for the game.

We found that the impact on the performance had a lot to do with the
number and size of the chunks. There is a fine balance between the number
and sizes of the chunks. If the chunks are too large the game will halt for a
moment resulting in a less fluent experience, while having many chunks, results
in a low FPS due to the constant stress on the CPU. In the final version we

Figure 6.1: Surogou with a draw distance of 35

decided to set the size of the chunks to a value of 10, while the number of
chunks is determined by the ”draw distance” slider. This also eliminates the

81

82 CHAPTER 6. DISCUSSION

issue regarding the inconsistency of objects created when having various chunk
sizes.

Furthermore, we took an initiative to increase the performance by introduc-
ing the yieldFactor and updateFrequency, as well as using coroutines.
These proved to be important parameters in order to avoid performances drops
when generating content in real-time. Another way to avoid performance drops
was to generate all content offline instead of online. Though this would mean
that we could not generate new content in real-time. One thing that could
be generated offline could tree due to number of vertices that needs to be
generated. Doing the instantiation of the game world we could have a list of
precomputed tress which then could be cloned into the game world as needed.
The results of this would be that the calculation of the vertices is not done in
real-time but instead when the world is instantiated. This would also result in
a longer instantiation time. In retrospective it would have been better to de-
velop our own implementation of the tree algorithm because sufficient control
of its behaviour.

Another important discussion is about the allocation of the workload be-
tween the CPU and the GPU. It was clear in the tests that lot of the perfor-
mance drops was due to the increased load of the CPU, while the GPU was is
only responsible for rendering the graphics. It might be beneficial to look into
GPU shader programming, such as tessellation, where processing of generating
the terrain could in theory be done on the GPU. The mesh collider data would
though still need to be calculated on the CPU, but the whole calculation of
vertices, triangles, normals and UV could be done on the GPU. This is unfor-
tunately only possible in the professional version of Unity, where we only had
access to the free version of Unity. In the same manner it could furthermore,
be discussed if it could be beneficial to use other engines or write the entire en-
gine from scratch in C++ instead. We did some preliminary research of which
engine to use when we initially decided to use the Unity engine, where we also
looked into the newly released Unreal Engine. However, we concluded that the
Unreal Engine was not suitable in its current state to do PCG. Furthermore, an
beneficial factor of writing an engine in C++, would be to increase performance
as we can have direct access to the CPU (assembly level) and GPU, while the
disadvantage of our own engine in C++ is that it is much more complicated
and takes more time. Additionally, if one is not careful and the program is not
structured well, bug fixing and memory management can become an issue.

While it is easy to prove when something is inconsistent it is harder to
prove when something is consistent. We had some thoughts of how to test
this but without finding a good solution as every test we thought of proved
to be an identical set of data. A method to see if to signals are identical
in Digital Signal Processing (DPS) is to mask them and see if they cancel
each other. We thought of a way to do something similar to this but without
any luck. However, explain how the consistency works within the game world
by showing screenshots The only way we could figure out of how to do the
test was to take screenshots, which by itself doesn’t prove the consistency of
the game world. As we have mentioned earlier it is more important that the

83

player feels the game world is consistent, while the game world might not be
completely consistent. An example of this the fireflies in our game world. The
fireflies have small movements within a little area and when the fireflies are
regenerated the position on which they moved is not accounted for during the
regeneration. This is because the consistency of the fireflies are not vital to
ensure the illusion of consistency within the game world.

An aspect of infinity can be discussed, as there must be a limit to infinity.
This is not a limit in mathmatical terms but a limit set by the simple fact that
a computer can’t produce an infinite amount of possibilities. However, there
can be an arbitrarily large amount of possibilities, which gives the illusion of
an infinite number of possibilities. The world seed also have a limit as it is
in fact an integer, which means that there can only be 4.294.967.295 possible
worlds.

In Chapter 2, we surveyed different types of algoritmes, and while we only
focused on Generative grammer (L-systems) and pseudo-random number gen-
erators (perlin noise), there are other interesting algorithms we haven’t dealt
with. If we had decided to go into depth with other types of algorithms, we
might have discovered other interesting issues. In chapter 3.1, we looked into
value noise, which could also have been used instead of perlin noise. In theory
and in the literature, perlin noise is argued to be a better looking noise algo-
ritmes, but in practises and by the experience we have gained from working
with these two noise algoritmes, the result of the two are much alike.

Figure 6.2: Perlin Noise Figure 6.3: Value Noise

We also would have liked to see, how the other noise algoritmes such as
simplex noise and worley noise would look, but it would require us to rewrite
a large portion of the code and with the limited time of this project it was not
possible.

We chose to implement coins in the game world in order to investigate the
issue of storing changes. Coins are of cause not very complex game assets,
but either way, implemented a simple system to store these changes. If more
complex entities, such as animals were to be implemented in the game, the same
principle would be used. That said, some other issues have to be addressed.
The first issue is that animals are only a part of the game world, which is
currently being rendered. Therefore, it is a problem to in regards of how an

84 CHAPTER 6. DISCUSSION

animal should behave, when it is not a part of the rendered game world. One
way, is to use time as a factor, which means that an animal always is at the
same place and doing the same thing (eating, sleeping, etc) at a given time.
For this to work with our current implementation, the animal would have to
be assigned to a specific chunk. This is because when the player returns to
the chunk the time would be used as the parameter for the animal and this
way we would be able to generated the behaviour that the animal should be
doing. Another approach, that doesn’t limit the movement of the animal to a

Figure 6.4: Illustration of animal behaviour. t = time

specified chunk is shown on figure 6.4.
In the figure 6.4 the red dot represents and an animal and the blue dot

represents the player. When the player leaves the area were the animal was
generated, it stores the time and position, and the actual animal is destroys
like any other object game world (t = 0). Over time the distance (circle around
the animal) is getting larger to simulate the animals movement. After some
time (t = 1), the two circles intersect (green area), which means that there is
a possibility the animal should be regenerated.

Chapter 7

Conclusion

In this project, we initially started to look into PCG as a means to improve
certain aspects of future game development, involving in the increased develop-
ment time due to the more content that needs to be created in videogames. We
have been researching this topic, by creating our own procedurally generated
game world (Surogou), which has given insights into issues that arises when
working with PCG. We have been focusing on the topics of performance, con-
trollability and consistency in procedurally generated game world, while also
exploring the potential of generating an infinite amount of content. In the im-
plementation of Surogou, we encountered several interesting issues, which are
unique in nature, when working with PCG, but also unique to our implemen-
tation, while these issues and solution might also be useful in general.

We have discussed our own implementation in relation to our topics, while
also discussed how we could further improve our game. As a result of this
project we can conclude several aspects which makes PCG a preferable topic
in videogame development for the following reasons.

The most of the development of Surogou has been done in less than two
weeks and because the game. In contrast to the size of the game world and the
variety of content, it is argued that the development time of a videogame could
indeed be lessen if at least some content would be procedurally generated.

When generating content in real-time it is important not to do all calcu-
lations in one program cycle, but scatter them over several program cycles,
in order to avoid performance drops. This can be done using coroutines or
threads.

Through our testing of Surogou it has become clear that a game, which fo-
cuses on procedurally generated content can compete with a typical videogame
in terms of performance. Surogou performs well because we have implemented
parameters which lessens the work load while generating in real-time. Further-
more, there is room for additional improvements, such as allocating some of
the work load in parallel threads to the GPU. Another improvement on the
performance would be to ensure that objects which requires a heavy work load
is only generated at the initialization of the game. In our implementation, trees

85

86 CHAPTER 7. CONCLUSION

are generated during real-time, which in some instances results in performance
drops. These can be resolved by creating a predefine a list of unique trees
during the initialization and then clone the tree into the game world when
needed.

The topic of infinity was resolved by creating the world as it is consumed.
This means while the player moves within the game world the content that is
required will be generated at real-time.

A way to create consistency is to have a world seed that is used all the
random number generators. This gives a game world which is deterministic
while still having the generation of the game world being stochastic. This
means that the same world seed will always generate the same game world but
every unique world seed creates a unique game world.

Lastly the controllability is an important factor when working with proce-
durally generated content, as this is the only way to control the characteristics
of the content that is generated.

Chapter 8

Perspectives

In this project we have investigated content in the form of game bits, game
spaces and (to some degree) ecosystems. As gameplay in Surogou is rather
limited, the next logical step would be to investigate game systems and game
scenarios. These would add objective gameplay to Surogou. One could imagine,
procedural generated quests and puzzles in the game world. Furthermore, these
quest and task, could have influence on how the world is generated and would
there also have an impact on game space. Furthermore, it could be beneficial
to develop a domain-specific language for defining the game bits and game
spaces (and later also game scenarios and systems), which would eventually
eliminate the need for hard coded content, such as types of trees, objects and
biome types, while also serving as a language for defining how the game should
be configured. It’s easy to see the potential of future versions of the game
especially considering its relative short development time. That said, we had
a great time working on Surogou.

87

Bibliography

[1] Jason Bevins. What is coherent noise?, 2005, (seen 17.12.2014). Retrieved
from http:// libnoise.sourceforge.net/ coherentnoise/ index.html .

[2] Chia-Jung Chan, Ruck Thawonmas, and Kuan-Ta Chen. Automatic sto-
rytelling in comics: A case study on World of Warcraft. In Proceedings of
ACM CHI 2009 (Works-in-Progress Program), 2009.

[3] Chanfort. L-Tree for Unity, 06.10.2014, (seen 12.12.2014). Retrieved from
http:// u3d.as/ content/ chanfort/ l-trees/ and .

[4] Etienne Chaudagne. Le surpoids concerne aussi les jeux vidéo (Overweight
also applied to video games) in Le Monde, 10.10.2014, (seen 08.12.2014).
Retrieved from http:// www.lemonde.fr/ pixels/ article/ 2014/ 10/ 10/
le-surpoids-concerne-aussi-les-jeux-video 4504293 4408996.html .

[5] Oxford Dictionaries. Definition of texture, 2014, (seen 26.11.2014).
Retrieved from http:// www.oxforddictionaries.com/ definition/ english/
texture.

[6] Jasper Flick. Noise, being a pseudorandom artist, 2014, (seen 14.11.2014).
Retrieved from http:// catlikecoding.com/ unity/ tutorials/ noise/ .

[7] Mark Hendrikx, Sebastiaan Meijer, Joeri Vam Der Velden, and Alexandru
Iosup. Procedural content generation for games: A survey. Delft University
of Technology, the Netherlands, 2011.

[8] Monika Karaliunaite. 3D Environment Project, 02.04.2012, (seen
27.11.2014). Retrieved from https:// monikalt2.wordpress.com/ category/
3d-modelling/ .

[9] pcg.wikidot.com. What is Procedural Content Generation?, 2014, (seen
14.11.2014). Retrieved from http:// pcg.wikidot.com/ what-pcg-is.

[10] Ken Perlin. Improving noise. Media Research Laboratory, Dept. of Com-
puter Science, New York University, 2002.

[11] Aristid Lindenmayer Przemyslaw Prusinkiewicz. The Algorithmic Beauty
of Plants. Springer-Verlag, 1990.

89

90 BIBLIOGRAPHY

[12] Klaas Jan de Kraker Ruben M. Smelik and Saskia A. Groenewegen. A sur-
vey of procedural methods for terrain modelling. Adaptive Game Content
Creation using Computational Intelligence, The Hague, The Netherlands,
2011.

[13] Noor Shaker, Julian Togelius, and Mark J. Nelson. Procedural Content
Generation in Games: A Textbook and an Overview of Current Research.
Springer, 2014.

[14] Unity Technologies. Anatomy of a Mesh, 2014, (seen 26.11.2014). Re-
trieved from http:// docs.unity3d.com/ Manual/ AnatomyofaMesh.html .

[15] Mark Terrano. 60 FPS on Consoles, 22.11.2014, (seen 16.12.2014).
Retrieved from http:// www.giantbomb.com/ 60-fps-on-consoles/
3015-3223/ .

[16] Julian Togelius, Emil Kastbjerg, David Schedl, and Georgios N. Yan-
nakakis. What is procedural content generation? mario on the borderline.
Adaptive Game Content Creation using Computational Intelligence, 2011.

[17] Max Wagner. Generating Vertex Normals, 12.9.2004, (seen 26.11.2014).
Retrieved from http:// www.emeyex.com/ site/ tuts/ VertexNormals.pdf .

[18] Minecraft Wiki. Alpha level format, 30.11.2014, (seen 04.12.2014). Re-
trieved from http:// minecraft.gamepedia.com/ Alpha Level Format .

[19] Wikipedia. Elite (video game), 12.12.2014, (seen 15.12.2014). Retrieved
from http:// en.wikipedia.org/ wiki/ Elite (video game).

[20] Wikipedia. The Sentinel, 2014, (seen 13.10.2014). Retrieved from http:
// en.wikipedia.org/ wiki/ The Sentinel (video game).

Appendix A

Code Appendix

A.1 GUIManager.cs

Listing A.1: GUIManager.cs

1 using UnityEngine;
2 using System.Collections;
3

4 public class GUIManager : MonoBehaviour
5 {
6 GameManager gm;
7 public string hash = "ENTER SEED HERE";
8 private int sWidthCenter;
9 private int sHeightCenter;

10 private float numChunksSlider = 25;
11 public GUISkin gSkin;
12 public Texture2D titleTexture;
13 public Texture2D loadTexture;
14

15

16 /**
17 * **********************
18 * Sets paramters on Awake
19 * **********************
20 **/
21 void Awake ()
22 {
23 gm = gameObject.GetComponent<GameManager> ();
24 sWidthCenter = (Screen.width / 2) - 50;
25 sHeightCenter = Screen.height / 2;
26

27 }
28

29 /**
30 * **********************
31 * Draw GUI
32 * **********************
33 **/
34 void OnGUI ()
35 {

91

92 APPENDIX A. CODE APPENDIX

36 GUI.skin = gSkin;
37 if (gm.state == 0) {
38 DrawTitle ();
39 }
40 if (gm.state == 1) {
41 DrawMenu ();
42 }
43 if (gm.state == 2) {
44 DrawHUD ();
45 }
46 }
47

48 /**
49 * **********************
50 * Draw Title
51 * **********************
52 **/
53 void DrawTitle ()
54 {
55 GUI.Box (new Rect (0, 0, Screen.width, Screen.height), "

Surogou: Version 16. December 2014 \n Contact:
fuad@vonloops.com \n use ’W’ ’A’ ’S’ ’D’ for movement
and ’space’ for jump \n \n created by: Anders Bjoern
Roerbaek Pedersen, Clement Kuta & Anders Olsen \n Music
and Sound by: Anders Bjoern Roerbaek Pedersen");

56 /***** Background Box ******/
57 GUI.Box (new Rect (0, 0, Screen.width, Screen.height), "

Surogou: Version 16. December 2014");
58

59 /***** Title ******/
60 GUI.DrawTexture (new Rect (sWidthCenter - 50, (

sHeightCenter - 180) - 3.5f, 200, 40), titleTexture);
61 int yPosition = 100;
62 GUI.Label (new Rect (sWidthCenter - 150, (sHeightCenter -

yPosition) - 3.5f, 100, 20), "Draw Distance");
63 numChunksSlider = GUI.HorizontalSlider (new Rect (

sWidthCenter, sHeightCenter - yPosition, 100, 30), (int
)numChunksSlider, 10, 35);

64 int numChunksSliderInt = (int)numChunksSlider;
65 GUI.Label (new Rect (sWidthCenter + 150, (sHeightCenter -

yPosition) - 3.5f, 50, 20), numChunksSliderInt.ToString
());

66 gm.SetNumberOfChunks ((int)numChunksSliderInt);
67 yPosition = 80;
68 GUI.Label (new Rect (sWidthCenter - 150, (sHeightCenter -

3.5f) - yPosition, 100, 20), "Seed:");
69 hash = GUI.TextField (new Rect (sWidthCenter, sHeightCenter

- yPosition, 100, 30), hash);
70 GUI.Label (new Rect (sWidthCenter + 150, (sHeightCenter -

3.5f) - yPosition, 50, 20), hash);
71 gm.Setseed (hash);
72

73 /***** Generate World ******/
74 if (GUI.Button (new Rect (sWidthCenter, sHeightCenter + 40,

100, 30), "Generate World")) {
75 GUI.DrawTexture (new Rect (sWidthCenter, (sHeightCenter

- 50) - 3.5f, 200, 40), loadTexture);

A.1. GUIMANAGER.CS 93

76 gm.state = 2;
77 gm.StartGame ();
78 }
79 }
80

81 /**
82 * **********************
83 * Draw HUD
84 * **********************
85 **/
86 void DrawHUD ()
87 {
88 GUI.DrawTexture (new Rect (10, (Screen.height - 50) - 3.5f,

200, 40), titleTexture);
89 GUI.Box (new Rect (10, 10, 100, 20), gm.getPoints ().

ToString ());
90 }
91

92 /**
93 * **********************
94 * Draw Menu
95 * **********************
96 **/
97 void DrawMenu ()
98 {
99 GUI.DrawTexture (new Rect (10, (Screen.height - 50) - 3.5f,

200, 40), titleTexture);
100 GUI.Box (new Rect (0, 0, Screen.width, Screen.height), "Surogou

: Version 16. December 2014 \n Contact: fuad@vonloops.com \
n use ’W’ ’A’ ’S’ ’D’ for movement and ’space’ for jump \n
\n created by: Anders Bjoern Roerbaek Pedersen, Clement
Kuta & Anders Olsen \n Music and Sound by: Anders Bjoern
Roerbaek Pedersen");

101 if (GUI.Button (new Rect (sWidthCenter, sHeightCenter, 80,
20), "New World")) {

102 gm.Reset ();
103 gm.state = 0;
104 }
105 if (GUI.Button (new Rect (sWidthCenter, sHeightCenter + 40,

80, 20), "Resume")) {
106 gm.state = 2;
107 }
108 if (GUI.Button (new Rect (sWidthCenter, sHeightCenter + 80,

80, 20), "Quit")) {
109 Application.Quit ();
110 }
111 }
112 }

94 APPENDIX A. CODE APPENDIX

A.2 GameManager.cs

Listing A.2: GameManager.cs

1 using UnityEngine;
2 using System.Collections;
3

4 public class GameManager : MonoBehaviour
5 {
6 private ChunkManager cm;
7 private TerrainManager tm;
8 private GameObject cam;
9 private GameObject menuCam;

10 private GameObject music;
11 private int points = 0;
12 public int state = 0; // 0 - menu, 1 - paused and 2 ingame
13

14 /**
15 * **********************
16 * called when the application is started
17 * **********************
18 **/
19 void Start ()
20 {
21 cm = gameObject.GetComponent<ChunkManager> ();
22 tm = gameObject.GetComponent<TerrainManager> ();
23 cam = GameObject.Find ("First Person Controller");
24 menuCam = GameObject.Find ("MenuCamera");
25 music = GameObject.Find ("Music");
26 }
27

28 /**
29 * **********************
30 * Core update method for the application and its different

states
31 * **********************
32 **/
33 void Update ()
34 {
35 CheckInput ();
36 if (state == 0) {
37 SetActiveObjects (false, true, true);
38 }
39 if (state == 1) {
40 SetActiveObjects (false, true, false);
41 }
42 if (state == 2) {
43 SetActiveObjects (true, false, false);
44 if (cm.InstantiateDone) {
45 cm.UpdateChunkManager ();
46 }
47 }
48 }
49

50 /**
51 * **********************
52 * Activates and deactivates cam, menucam and music gameOjects

A.2. GAMEMANAGER.CS 95

53 * **********************
54 **/
55 private void SetActiveObjects (bool cam, bool menuCam, bool

music)
56 {
57 this.cam.SetActive (cam);
58 this.menuCam.SetActive (menuCam);
59 this.music.SetActive (music);
60 }
61

62 /**
63 * **********************
64 * checks the input every frame in order to see if the "escape"

key was pressed, which changes the game state to 1 (pause
state)

65 * **********************
66 **/
67 private void CheckInput ()
68 {
69 if (state == 2) {
70 if (Input.GetKeyDown (KeyCode.Escape)) {
71 menuCam.transform.position = new Vector3 (cam.

transform.position.x, 40, cam.transform.
position.z);

72 state = 1;
73 }
74 }
75 }
76

77 /**
78 * **********************
79 * Method for resetting the chunkmanager
80 * **********************
81 **/
82 public void Reset ()
83 {
84 points = 0;
85 cm.collectedCoins.Clear();
86 cam.transform.position = new Vector3(0,4,0);
87 cm.ResetChunkManager ();
88 }
89

90 /**
91 * **********************
92 * Method to initialise the game
93 * **********************
94 **/
95 public void StartGame ()
96 {
97 cm.InitializeChunkManager ();
98 }
99

100 /**
101 * **********************
102 * Gettes and setters
103 * **********************
104 **/

96 APPENDIX A. CODE APPENDIX

105 public void SetDebugBiomes (bool b)
106 {
107 tm.debugBiomes = b;
108 }
109

110 public void SetNumberOfChunks (int i)
111 {
112 tm.nChunks = i;
113 }
114

115 public void SetchunkSize (int i)
116 {
117 tm.chunkSize = i;
118 }
119

120 public void Setseed (string hash)
121 {
122 tm.seed = hash.GetHashCode ();
123 Debug.Log(tm.seed);
124 }
125

126 public int getPoints ()
127 {
128 return points;
129 }
130

131 public void AddPoints (int amount)
132 {
133 points += amount;
134 }
135

136 public void CollectCoin (Vector3 pos)
137 {
138 cm.collectedCoins.Add (pos);
139 }
140 }

A.3. CHUNKMANAGER.CS 97

A.3 ChunkManager.cs

Listing A.3: ChunkManager.cs

1 using UnityEngine;
2 using System.Collections;
3 using System.Collections.Generic;
4

5 public class ChunkManager : MonoBehaviour
6 {
7 public Material defaultMaterial;
8 public Camera mainCamera;
9 public Chunk chunkPrefab;

10 private int updateFrequncy = 20;
11 private float yieldFactor = 0.5f;
12 private int updateCount = 0;
13 private int r_position_x = 0;
14 private int r_position_y = 0;
15 private TerrainManager tm;
16 [HideInInspector]
17 public List<Vector3>
18 collectedCoins;
19 public bool InstantiateDone = false;
20 private Vector3 camPos;
21 private Chunk ChunkInstance;
22 private List<Chunk> cList;
23

24 /**
25 * **********************
26 * Initialize the chunk manager
27 * **********************
28 **/
29 public void InitializeChunkManager ()
30 {
31 Debug.Log ("InitializeTerrain started!");
32 camPos = mainCamera.transform.position;
33 tm = gameObject.GetComponent<TerrainManager> ();
34 tm.CreatePerlinNoise();
35 cList = new List<Chunk> ();
36 r_position_x = 0;
37 r_position_y = 0;
38 for (int z=0; z < tm.nChunks; z++) {
39 for (int x=0; x < tm.nChunks; x++) {
40 r_position_x = (int)(x * tm.chunkSize - tm.

chunkSize * 0.5f * tm.nChunks + camPos.x);
41 r_position_y = (int)(z * tm.chunkSize - tm.

chunkSize * 0.5f * tm.nChunks + camPos.z);
42 ChunkInstance = Instantiate (chunkPrefab) as Chunk;
43 ChunkInstance.InitializeChunk (new Vector3 (

r_position_x, 0, r_position_y), defaultMaterial
, tm, this, tm.nChunks);

44 ChunkInstance.terrainGo.transform.position = new
Vector3 (x * tm.chunkSize - tm.chunkSize * 0.5f

* tm.nChunks + camPos.x,0,z * tm.chunkSize -
tm.chunkSize * 0.5f * tm.nChunks + camPos.z);

45 ChunkInstance.GenerateChunk ();
46 cList.Add (ChunkInstance);

98 APPENDIX A. CODE APPENDIX

47 }
48 }
49 InstantiateDone = true;
50 Name ();
51 }
52

53 /**
54 * **********************
55 * Resets the chunkmanager and destroys all the objects on it
56 * **********************
57 **/
58 public void ResetChunkManager ()
59 {
60 InstantiateDone = false;
61 for (int i = 0; i < tm.nChunks*tm.nChunks; i++) {
62 cList [i].DestroyChunkObjects ();
63 Destroy (cList [i].terrainGo);
64 }
65 cList.Clear ();
66 }
67

68 /**
69 * **********************
70 * Updates the Chunk Manager
71 * **********************
72 **/
73 public void UpdateChunkManager ()
74 {
75

76 if (updateCount % updateFrequncy == 0) {
77 StartCoroutine ("UpdateChunks", 0.0f);
78 }
79 camPos = mainCamera.transform.position;
80 updateCount++;
81 }
82

83 /**
84 * **********************
85 * Update Chunks
86 * **********************
87 **/
88 IEnumerator UpdateChunks ()
89 {
90 float delta = ((tm.chunkSize) * tm.nChunks) * 0.5f;
91 if(cList.Count > 0){
92 for (int i = 0; i < tm.nChunks*tm.nChunks; i++) {
93 float dist_z = camPos.z - cList [i].terrainGo.transform

.localPosition.z;
94 float dist_x = camPos.x - cList [i].terrainGo.transform

.localPosition.x;
95

96 if (dist_z > delta) {
97 Vector3 newPos = new Vector3 (cList [i].

terrainGo.transform.localPosition.x, 0,
cList [i].terrainGo.transform.localPosition
.z + delta*2);

A.3. CHUNKMANAGER.CS 99

98 cList [i].terrainGo.transform.position = newPos
;

99 cList [i].setPosition (newPos);
100 cList [i].UpdateChunk ();
101 yield return new WaitForSeconds (yieldFactor);
102 }
103 else if (dist_z < -delta) {
104 Vector3 newPos = new Vector3 (cList [i].

terrainGo.transform.localPosition.x, 0,
cList [i].terrainGo.transform.localPosition
.z - delta*2);

105 cList [i].terrainGo.transform.position = newPos
;

106 cList [i].setPosition (newPos);
107 cList [i].UpdateChunk ();
108 yield return new WaitForSeconds (yieldFactor);
109 }
110 else if (dist_x > delta) {
111 Vector3 newPos = new Vector3 (cList [i].

terrainGo.transform.localPosition.x + delta

*2, 0, cList [i].terrainGo.transform.
localPosition.z);

112 cList [i].terrainGo.transform.position = newPos
;

113 cList [i].setPosition (newPos);
114 cList [i].UpdateChunk ();
115 yield return new WaitForSeconds (yieldFactor);
116 }
117 else if (dist_x < -delta) {
118 Vector3 newPos = new Vector3 (cList [i].

terrainGo.transform.localPosition.x - delta

*2, 0, cList [i].terrainGo.transform.
localPosition.z);

119 cList [i].terrainGo.transform.position = newPos
;

120 cList [i].setPosition (newPos);
121 cList [i].UpdateChunk ();
122 yield return new WaitForSeconds (yieldFactor);
123 }
124 }
125

126

127 }
128 }
129

130 /**
131 * **********************
132 * Nameing the chunk
133 * **********************
134 **/
135 private void Name ()
136 {
137 for (int i = 0; i < tm.nChunks*tm.nChunks; i++) {
138 cList [i].terrainGo.transform.name = "terrainChunk";
139 }
140 }
141 }

100 APPENDIX A. CODE APPENDIX

A.4 TerrainManager.cs

Listing A.4: TerrainManager.cs

1 using UnityEngine;
2 using System.Collections;
3 using System.Collections.Generic;
4

5 public class TerrainManager : MonoBehaviour
6 {
7 public int chunkSize = 10;
8 public int nChunks = 35;
9 public bool debugBiomes = false;

10 public Coin coin;
11 public FireFly firefly;
12 public GenericObject rock;
13 public Tree2 tree;
14 public int seed;
15 private int returnType;
16 private PerlinNoise[] perlinNoise = new PerlinNoise[15];
17

18 public void CreatePerlinNoise(){
19 for (int i = 0; i < 15; i++) {
20 perlinNoise [i] = new PerlinNoise (seed + i);
21 }
22 }
23

24 /**
25 * **********************
26 * returns the type of biome
27 * **********************
28 **/
29 public int GetBiomeType ()
30 {
31 return returnType;
32 }
33

34 /**
35 * **********************
36 * Density of trees
37 * **********************
38 **/
39 public float TreeDensity (float pos_x, float pos_z)
40 {
41 float noise = perlinNoise[2].FractalNoise2D (new Vector2 (pos_x

, pos_z), 8, 2f, 1f, 1f, 1f);
42 return noise;
43 }
44

45 /**
46 * **********************
47 * Density of coins
48 * **********************
49 **/
50 public float CoinDensity (float pos_x, float pos_z)
51 {

A.4. TERRAINMANAGER.CS 101

52 float noise = perlinNoise[1].FractalNoise2D (new Vector2 (pos_x
, pos_z), 8, 2f, 1f, 1f, 1f);

53 return noise;
54 }
55

56 /**
57 * **********************
58 * Density of fireflies
59 * **********************
60 **/
61 public float FireflyDensity (float pos_x, float pos_z)
62 {
63 float noise = perlinNoise[2].FractalNoise2D (new Vector2 (pos_x

, pos_z), 8, 2f, 1f, 1f, 1f);
64 return noise;
65 }
66

67 /**
68 * **********************
69 * Density of rocks
70 * **********************
71 **/
72 public float RockDensity (float pos_x, float pos_z)
73 {
74 float noise = perlinNoise[3].FractalNoise2D (new Vector2 (pos_x

, pos_z), 8, 0.5f, 1f, 1f, 1f);
75 return noise;
76 }
77

78 /**
79 * **********************
80 * Texture the terrain
81 * **********************
82 **/
83 public Color TerrainColor (float pos_x, float pos_z)
84 {
85 float threshold = 0.1f;
86 float red = (perlinNoise[4].FractalNoise2D (new Vector2 (pos_x,

pos_z), 3, 0.04f, 4f, 1f, 1f)) + 1;
87 float green = (perlinNoise[5].FractalNoise2D (new Vector2 (

pos_x, pos_z), 2, 0.05f, 2f, 0.75f, 1f)) + 1;
88 float blue = (perlinNoise[6].FractalNoise2D (new Vector2 (pos_x

, pos_z), 2, 0.03f, 2f, 0.5f, 1f)) + 1;
89

90 if (red < threshold) {
91 red = threshold;
92 }
93 if (green < threshold) {
94 green = threshold;
95 }
96 if (blue < threshold) {
97 blue = threshold;
98 }
99 return new Color (red, green, blue) * 0.5f;

100 }
101

102 /**

102 APPENDIX A. CODE APPENDIX

103 * **********************
104 * Grandbiome
105 * **********************
106 **/
107 public float GrandBiome (float pos_x, float pos_z)
108 {
109 float noise = perlinNoise[7].FractalNoise2D (new Vector2 (pos_x

, pos_z), 8, 0.2f, 2f, 0.5f, 3f); //
110 float noise2 = perlinNoise[8].FractalNoise2D (new Vector2 (

pos_x, pos_z), 8, 0.4f, 3f, 0.5f, 2f) - 1;
111 float noise3 = perlinNoise[9].FractalNoise2D(new Vector2(pos_x,

pos_z),8,0.001f,3f,0.1f,128);
112 float[] thresh = new float[] { 1.1f, 1f, 0.9f, 0.8f, 0.7f, 0.0f

, -1f};
113

114 if (noise > thresh [0]) {
115

116 noise = 16f + noise2;
117 } else if (noise < thresh [0] && noise > thresh [1]) {
118 noise = 8f + noise2;
119 } else if (noise < thresh [1] && noise > thresh [2]) {
120 noise = 3f + noise2;
121 } else if (noise < thresh [2] && noise > thresh [3]) {
122 noise = 2f + noise2;
123 } else if (noise < thresh [3] && noise > thresh [4]) {
124 noise = 1f + noise2;
125

126 } else if (noise < thresh [4] && noise > thresh [5]) {
127 noise = 0.7f + noise2;
128 } else if (noise < thresh [5] && noise > thresh [6]) {
129 noise = -1f + noise2;
130 } else {
131 noise = -1f + noise2;
132 }
133

134 returnType = 4;
135 return noise + noise3;
136 }
137

138 /**
139 * **********************
140 * Swamp Biome
141 * **********************
142 **/
143 public float SwampBiome (float pos_x, float pos_z)
144 {
145 float noise = perlinNoise[9].FractalNoise2D (new Vector2 (pos_x

, pos_z), 8, 0.4f, 2f, 0.5f, 3f);
146 float noise2 = perlinNoise[10].FractalNoise2D (new Vector2 (

pos_x, pos_z), 8, 0.4f, 3f, 0.039f, 0.5f);
147 int[] tresh = new int[]{ -3 , -2 , -1 , 0 , 1 , 2 , 3 };
148

149 if (noise < tresh [0]) {
150 noise = 5f + noise2;
151 } else if (noise > tresh [0] && noise < tresh [1]) {
152 noise = 4f + noise2;
153 } else if (noise > tresh [1] && noise < tresh [2]) {

A.4. TERRAINMANAGER.CS 103

154 noise = 3f + noise2;
155 } else if (noise > tresh [2] && noise < tresh [3]) {
156 noise = 2f + noise2;
157 } else if (noise > tresh [3] && noise < tresh [4]) {
158 noise = 1f + noise2;
159 } else if (noise > tresh [4] && noise < tresh [5]) {
160 noise = -1f + noise2;
161 } else if (noise > tresh [5] && noise < tresh [6]) {
162 noise = -1f + noise2;
163 } else {
164 noise = -4f + noise2;
165 }
166 returnType = 2;
167 return noise;
168 }
169

170 /**
171 * **********************
172 * Coastbiome
173 * **********************
174 **/
175 public float CoastBiome (float pos_x, float pos_z)
176 {
177 float noise = perlinNoise[11].FractalNoise2D (new Vector2 (

pos_x, pos_z), 8, 0.04f, 3f, 0.2f, 16f) + 1;
178 float noise2 = perlinNoise[12].FractalNoise2D (new Vector2 (

pos_x, pos_z), 8, 0.01f, 3f, 0.5f, 16f) - 1;
179 return Mathf.Abs(noise + noise2);
180 }
181

182

183 /**
184 * **********************
185 * Seabiome
186 * **********************
187 **/
188 public float SeaBiome (float pos_x, float pos_z)
189 {
190 float noise = perlinNoise[13].FractalNoise2D (new Vector2 (

pos_x, pos_z), 3, 0f, 1f, 1f, 1f);
191 int[] tresh = new int[]{ -3 , -2 , -1 , 0 , 1 , 2 , 3 };
192 noise = -1f;
193 return noise;
194 }
195

196

197 /**
198 * **********************
199 * Hillbiome
200 * **********************
201 **/
202 public float HillBiome (float pos_x, float pos_z)
203 {
204 float noise = perlinNoise[14].FractalNoise2D (new Vector2 (

pos_x, pos_z), 4, 0.01f, 2f, 0.5f, 15f);
205 float noise2 = perlinNoise[1].FractalNoise2D (new Vector2 (

pos_x, pos_z), 8, 0.5f, 3f, 0.23f, 3f);

104 APPENDIX A. CODE APPENDIX

206

207 return (noise + noise2);
208 }
209

210

211 /**
212 * **********************
213 * Biome types
214 * **********************
215 **/
216 public float GetBiomes (float pos_x, float pos_z)
217 {
218 float biomeNoise = perlinNoise[1].FractalNoise2D (new Vector2 (

pos_x, pos_z), 8, 0.01f, 2f, 0.5f, 4f);
219 float elevationNoise = perlinNoise[9].FractalNoise2D(new

Vector2(pos_x,pos_z),8,0.012f,3f,0.1f,128);
220 int type = (int)(biomeNoise) + 4;
221 if (type < 0.5f) {
222 returnType = 0;
223 biomeNoise = SeaBiome (pos_x, pos_z);
224 }
225 if (type == 1) {
226 returnType = 1;
227 biomeNoise = SeaBiome (pos_x, pos_z);
228 }
229 if (type == 2) {
230 returnType = 2;
231 biomeNoise = HillBiome (pos_x, pos_z);
232 }
233 if (type == 3) {
234 returnType = 3;
235 biomeNoise = SwampBiome (pos_x, pos_z);
236 }
237 if (type == 4) {
238 returnType = 4;
239 biomeNoise = GrandBiome (pos_x, pos_z);
240 }
241 if (type == 5) {
242 returnType = 5;
243 biomeNoise = CoastBiome (pos_x, pos_z);
244 }
245 if (type == 6) {
246 returnType = 6;
247 biomeNoise = SeaBiome (pos_x, pos_z);
248 }
249 if (type == 7) {
250 returnType = 7;
251 biomeNoise = SeaBiome (pos_x, pos_z);
252 }
253 if (type == 8) {
254 returnType = 8;
255 biomeNoise = SeaBiome (pos_x, pos_z);
256 }
257 return biomeNoise + elevationNoise
258 }
259

260 /**

A.4. TERRAINMANAGER.CS 105

261 * **********************
262 * Debug float terrain
263 * **********************
264 **/
265 public float DebugflatTerrain ()
266 {
267 return 1;
268 }
269 }

106 APPENDIX A. CODE APPENDIX

A.5 Chunk.cs

Listing A.5: TerrainManager.cs

1 using Unity.Engine;
2 using System.Collections;
3 using System.Collections.Generic;
4

5 [RequireComponent(typeof(MeshFilter))]
6 [RequireComponent(typeof(MeshRenderer))]
7 [RequireComponent(typeof(MeshCollider))]
8

9 public class Chunk : MonoBehaviour
10 {
11

12 /***************
13 * References
14 **************/
15 public Vector3 cameraPosition;
16 private TerrainManager tm;
17 private ChunkManager cm;
18 public Vector3 pos;
19

20 /***************
21 * Objects
22 **************/
23 private List<GenericObject> genericObjectList;
24 private List<Coin> coinList;
25 private List<FireFly> fireFlyList;
26 private List<GenericObject> rockList;
27 private List<Tree2> treeList;
28

29 /***************
30 * MeshData
31 **************/
32 public GameObject terrainGo;
33 private Vector3[] vertices = null;
34 private Vector3[] normals = null;
35 private Vector2[] uv = null;
36 private int[] triangles;
37 private int vsize_x;
38 private int vsize_z;
39 private int numberOfChunks;
40 private Mesh mesh;
41 private MeshFilter mesh_filter;
42 private MeshRenderer mesh_renderer;
43 private MeshCollider mesh_collider;
44 const int scale = 8;
45

46 /***************
47 * Graphics
48 **************/
49 private Material defaultMaterial;
50 private Texture2D texture;
51

52 /**
53 * **********************

A.5. CHUNK.CS 107

54 * Instantiate the chunk
55 * **********************
56 **/
57 public void InitializeChunk (Vector3 position, Material

defaultMaterial, TerrainManager terrainManager,
ChunkManager chunkManager, int numberOfChunks)

58 {
59 terrainGo = new GameObject ("terrainMesh");
60 this.numberOfChunks = numberOfChunks;
61 this.tm = terrainManager;
62 this.cm = chunkManager;
63 this.pos = position;
64 this.defaultMaterial = defaultMaterial;
65 int numTris = terrainManager.chunkSize * terrainManager.

chunkSize * 2;
66 vsize_x = terrainManager.chunkSize + 1;
67 vsize_z = terrainManager.chunkSize + 1;
68 int numVerts = vsize_x * vsize_z;
69

70 // chunk objects
71 genericObjectList = new List<GenericObject> ();
72 coinList = new List<Coin> ();
73 fireFlyList = new List<FireFly> ();
74 rockList = new List<GenericObject> ();
75 treeList = new List<Tree2> ();
76

77 vertices = new Vector3[numVerts];
78 normals = new Vector3[numVerts];
79 uv = new Vector2[numVerts];
80 triangles = new int[numTris * 3];
81

82 mesh = new Mesh ();
83 texture = new Texture2D (vsize_x, vsize_z);
84 texture.wrapMode = TextureWrapMode.Clamp;
85 texture.filterMode = FilterMode.Bilinear;
86 }
87

88 /**
89 * **********************
90 * Method for destroying the objects on a chunk
91 * **********************
92 **/
93 public void DestroyChunkObjects ()
94 {
95 if (genericObjectList.Count != 0) {
96 for (int i = 0; i < genericObjectList.Count; i++) {
97 if (genericObjectList [i] != null) {
98 genericObjectList [i].DestroySelf ();
99 }

100 }
101 genericObjectList.Clear ();
102 }
103

104 if (coinList.Count != 0) {
105 for (int i = 0; i < coinList.Count; i++) {
106 if (coinList [i] != null) {
107 coinList [i].DestroySelf ();

108 APPENDIX A. CODE APPENDIX

108 }
109 }
110 coinList.Clear ();
111 }
112

113 if (fireFlyList.Count != 0) {
114 for (int i = 0; i < fireFlyList.Count; i++) {
115 fireFlyList [i].DestroySelf ();
116 }
117 fireFlyList.Clear ();
118 }
119

120 if (rockList.Count != 0) {
121 for (int i = 0; i < rockList.Count; i++) {
122 rockList [i].DestroySelf ();
123 }
124 rockList.Clear ();
125 }
126

127 if (treeList.Count != 0) {
128 for (int i = 0; i < treeList.Count; i++) {
129 treeList [i].DestroySelf ();
130 }
131 treeList.Clear ();
132 }
133 }
134

135 /**
136 * **********************
137 * Debug biomes, by using colored textures
138 * **********************
139 **/
140 private void DebugBiomeColors (int x, int z)
141 {
142 if (tm.debugBiomes) {
143 if (tm.GetBiomeType () > 0) {
144 // 0 white -1
145 texture.SetPixel (x, z, new Color (255, 49, 28, 1))

;
146 texture.Apply ();
147 }
148 if (tm.GetBiomeType () == 1) {
149 // 1 yellow
150 texture.SetPixel (x, z, new Color (255, 255, 0, 1))

;
151 texture.Apply ();
152 }
153 if (tm.GetBiomeType () == 2) {
154 // 2 red
155 texture.SetPixel (x, z, new Color (255, 0, 0, 1));
156 texture.Apply ();
157 }
158 // 3 green
159 if (tm.GetBiomeType () == 3) {
160 texture.SetPixel (x, z, new Color (0, 255, 0, 1));
161 texture.Apply ();
162 }

A.5. CHUNK.CS 109

163 // 4 blue
164 if (tm.GetBiomeType () == 4) {
165 texture.SetPixel (x, z, new Color (0, 0, 255, 1));
166 texture.Apply ();
167 } // 5 violet
168 if (tm.GetBiomeType () == 5) {
169 texture.SetPixel (x, z, new Color (255, 0, 255, 1))

;
170 texture.Apply ();
171 } // 6 Cyan
172 if (tm.GetBiomeType () == 6) {
173 texture.SetPixel (x, z, new Color (0, 255, 255, 1))

;
174 texture.Apply ();
175 }
176 if (tm.GetBiomeType () > 7) {
177 texture.SetPixel (x, z, new Color (10, 150, 130, 1)

);
178 texture.Apply ();
179 }
180 }
181 }
182

183 /**
184 * **********************
185 * Instantate and placement of objects on a chunk
186 * **********************
187 **/
188 private void PlaceObjects (float px, float pz, float height)
189 {
190 bool isEdge = false;
191 if (pz * scale % tm.chunkSize == 0 || px * scale % tm.

chunkSize == 0) {
192 isEdge = true;
193 }
194 if (!isEdge) {
195 /*

*/

196 float treeDensity = tm.TreeDensity (px, pz);
197 if (treeDensity > 0.6f && treeList.Count < 1 && height

> 1f && height < 5f && px != 0 && px != 0) {
198 Tree2 treeInstance = Instantiate (tm.tree) as Tree2

;
199 int seed = (int)(px * pz);
200 Random.seed = seed;
201 float yRotation = Random.Range (0, 360);
202

203 switch (tm.GetBiomeType ())
204 {
205 case 0 : treeInstance.SetupCone (seed,20,0.0f,1.4

f,10,10);
206 break;
207 case 1 : treeInstance.SetupCone (seed,15,9.0f,1.0

f,2,2);
208 break;

110 APPENDIX A. CODE APPENDIX

209 case 2 : treeInstance.SetupCone (seed,7,16.0f,1.0
f,8,2);

210 break;
211 case 3 : treeInstance.SetupCone (seed,15,16.0f

,1.0f,10,2);
212 break;
213 case 4 : treeInstance.SetupCone (seed,15,5.0f,1.0

f,3,2);
214 break;
215 case 5 : treeInstance.SetupCone (seed,15,4.0f,1.0

f,5,2);
216 break;
217 case 6 : treeInstance.SetupCone (seed,12,16.0f

,1.0f,1,2);
218 break;
219 default : treeInstance.SetupCone (seed,15,4.0f

,1.0f,5,2);
220 break;
221 }
222

223

224 treeInstance.CreateMesh ();
225 treeInstance.renderer.material.color = tm.

TerrainColor (px, pz);
226 treeInstance.plane.transform.position = new Vector3

(px * scale, (height - 1), pz * scale);
227 treeInstance.plane.transform.rotation = Quaternion.

Euler (new Vector3 (0f, yRotation, 0f));
228 treeList.Add (treeInstance);
229 }
230

231 /*

*/

232 float fireflyDensity = tm.FireflyDensity (px, pz);
233 if (fireflyDensity > 0.8f && fireFlyList.Count < 1 &&

height < 1f) {
234 fireFlyList.Add (Instantiate (tm.firefly, new

Vector3 (px * scale, (height + 10), pz * scale)
, Quaternion.identity) as FireFly);

235 }
236

237 /*

*/

238 float coinDensity = tm.CoinDensity (px, pz);
239

240 if (coinDensity > 0.8f && coinList.Count < 1 && height
> 0.1f && height < 4f) {

241 bool alreadyCollected = false;
242

243 for (int i = 0; i < cm.collectedCoins.Count; i++) {
244 Vector3 c = cm.collectedCoins [i];
245 if (c.x == terrainGo.transform.position.x && c.

z == terrainGo.transform.position.z) {
246 alreadyCollected = true;
247 break;

A.5. CHUNK.CS 111

248 }
249 }
250 if (!alreadyCollected) {
251 Coin coin = tm.coin;
252 coin.gameObject.name = "Coin";
253 coinList.Add (Instantiate (coin, new Vector3 (

px * scale, (height + 1), pz * scale),
Quaternion.identity) as Coin);

254 }
255 }
256

257 /*

*/

258 float rockDensity = tm.RockDensity (px, pz);
259 if (rockDensity > 0.5f && rockList.Count < 1 && height

> 0f && tm.GetBiomeType () == 4) {
260 Random.seed = (int)(px * pz);
261 float yRotation = Random.Range (0, 360);
262 GenericObject rock1 = Instantiate (tm.rock, new

Vector3 (px * scale, (height), pz * scale),
Quaternion.Euler (new Vector3 (-90, yRotation,
0))) as GenericObject;

263 rock1.transform.renderer.material.color = tm.
TerrainColor (px, pz);

264 rockList.Add (rock1);
265 }
266 }
267 }
268 /**
269 * **********************
270 * Generate a chunk (texture, objects, vertices, normals and UV)
271 * **********************
272 **/
273 private void GenerateChunkData ()
274 {
275 DestroyChunkObjects ();
276 for (int z=0; z < vsize_z; z++) {
277 for (int x=0; x < vsize_x; x++) {
278 float posOffset_x = ((x + pos.x) / scale);
279 float posOffset_z = ((z + pos.z) / scale);
280 float height;
281 height = tm.GetBiomes (posOffset_x, posOffset_z);
282 texture.SetPixel (x, z, tm.TerrainColor (

posOffset_x, posOffset_z));
283 PlaceObjects (posOffset_x, posOffset_z, height);
284 vertices [z * vsize_x + x] = new Vector3 (x, height

, z);
285 normals [z * vsize_x + x] = Vector3.up;
286 uv [z * vsize_x + x] = new Vector2 ((float)x /

vsize_x, (float)z / vsize_z);
287 }
288 }
289

290 for (int z=0; z < tm.chunkSize; z++) {
291 for (int x=0; x < tm.chunkSize; x++) {
292 int squareIndex = z * tm.chunkSize + x;

112 APPENDIX A. CODE APPENDIX

293 int triOffset = squareIndex * 6;
294 triangles [triOffset + 0] = z * vsize_x + x + 0;
295 triangles [triOffset + 1] = z * vsize_x + x +

vsize_x + 0;
296 triangles [triOffset + 2] = z * vsize_x + x +

vsize_x + 1;
297

298 triangles [triOffset + 3] = z * vsize_x + x + 0;
299 triangles [triOffset + 4] = z * vsize_x + x +

vsize_x + 1;
300 triangles [triOffset + 5] = z * vsize_x + x + 1;
301 }
302 }
303 }
304

305 /**
306 * **********************
307 * Generates a new game object with a mesh attached to it
308 * **********************
309 **/
310 public void GenerateChunk ()
311 {
312 GenerateChunkData ();
313 // Create a new Mesh and populate with the data
314 mesh.vertices = vertices;
315 mesh.triangles = triangles;
316 mesh.normals = normals;
317 mesh.uv = uv;
318 mesh.RecalculateBounds ();
319 //mesh.RecalculateNormals ();
320 mesh_filter = (MeshFilter)terrainGo.AddComponent (typeof(

MeshFilter));
321 mesh_filter.mesh = mesh;
322 mesh_collider = (MeshCollider)terrainGo.AddComponent (

typeof(MeshCollider));
323 mesh_collider.sharedMesh = mesh;
324 mesh_renderer = (MeshRenderer)terrainGo.AddComponent (

typeof(MeshRenderer));
325 mesh_renderer.material = defaultMaterial;
326 mesh_renderer.material.mainTexture = texture;
327 texture.Apply ();
328 }
329

330 /**
331 * **********************
332 * Updates the mesh
333 * **********************
334 **/
335 public void UpdateChunk ()
336 {
337 GenerateChunkData ();
338 mesh.vertices = vertices;
339 mesh.triangles = triangles;
340 //mesh.RecalculateNormals ();
341 mesh_collider.sharedMesh = null;
342 mesh_collider.sharedMesh = mesh;
343 mesh_filter.mesh = mesh;

A.5. CHUNK.CS 113

344 mesh.RecalculateBounds ();
345 texture.Apply ();
346 }
347

348 /**
349 * **********************
350 * Moves the mesh to a new position
351 * **********************
352 **/
353 public void setPosition (Vector3 newPosition)
354 {
355 pos = newPosition;
356 }
357 }

114 APPENDIX A. CODE APPENDIX

A.6 MoveToCamera.cs

Listing A.6: MoveToCamera.cs

1 using UnityEngine;
2 using System.Collections;
3

4 public class MoveToCamera : MonoBehaviour {
5 Camera cam;
6

7 /**
8 * **********************
9 * Initialization

10 * **********************
11 **/
12 void Start () {
13 cam = Camera.main;
14 }
15

16 /**
17 * **********************
18 * Updates every frame
19 * **********************
20 **/
21 void Update () {
22 transform.position = cam.transform.position;
23 }
24 }

A.7. PERLINNOISE.CS 115

A.7 PerlinNoise.cs

Listing A.7: PerlinNoise.cs

1 using UnityEngine;
2 using System.Collections;
3

4 public class PerlinNoise
5 {
6 const int SIZE = 511;
7 private int[] perm = new int[SIZE + SIZE];
8 private static Vector2[] gradients2D = {
9 new Vector2 (1f, 0f),

10 new Vector2 (-1f, 0f),
11 new Vector2 (0f, 1f),
12 new Vector2 (0f, -1f),
13 new Vector2 (1f, 1f).normalized,
14 new Vector2 (-1f, 1f).normalized,
15 new Vector2 (1f, -1f).normalized,
16 new Vector2 (-1f, -1f).normalized
17 };
18 private const int gradientsMask2D = 7;
19 private static float sqr2 = Mathf.Sqrt (2f);
20

21 /**
22 * **********************
23 * some code explanation
24 * **********************
25 **/
26 public PerlinNoise (int seed)
27 {
28 UnityEngine.Random.seed = seed;
29

30 int i, j, k;
31 for (i = 0; i < SIZE; i++) {
32 // creates 0 - 255
33 perm [i] = i;
34 }
35

36 while (i > 1) {
37 i--;
38 k = perm [i];
39 j = UnityEngine.Random.Range (0, SIZE);
40 perm [i] = perm [j];
41 perm [j] = k;
42 }
43

44 for (i = 0; i < SIZE; i++) {
45 perm [SIZE + i] = perm [i];
46 }
47 }
48

49 /**
50 * **********************
51 * 6tˆ5 - 15tˆ4 + 10tˆ3
52 * **********************
53 **/

116 APPENDIX A. CODE APPENDIX

54 float Smooth (float t)
55 {
56 //return Mathf.Pow(t*t*t,2) - Mathf.Pow(t*t*t,3);;
57 return t * t * t * (t * (t * 6.0f - 15.0f) + 10.0f);
58 }
59

60 /**
61 * **********************
62 * some code explanation
63 * **********************
64 **/
65 private static float Dot (Vector2 g, float x, float y)
66 {
67 return g.x * x + g.y * y;
68 }
69

70 /**
71 * **********************
72 * some code explanation
73 * **********************
74 **/
75 public float Perlin2D (Vector3 point, float frequency)
76 {
77 point *= frequency;
78 int ix0 = Mathf.FloorToInt (point.x);
79 int iy0 = Mathf.FloorToInt (point.y);
80 float tx0 = point.x - ix0;
81 float ty0 = point.y - iy0;
82 float tx1 = tx0 - 1f;
83 float ty1 = ty0 - 1f;
84 ix0 &= SIZE;
85 iy0 &= SIZE;
86 int ix1 = (ix0 + 1) & SIZE;
87 int iy1 = (iy0 + 1) & SIZE;
88

89 Vector2 g00 = gradients2D [perm [perm [ix0] + iy0] &
gradientsMask2D];

90 Vector2 g10 = gradients2D [perm [perm [ix1] + iy0] &
gradientsMask2D];

91 Vector2 g01 = gradients2D [perm [perm [ix0] + iy1] &
gradientsMask2D];

92 Vector2 g11 = gradients2D [perm [perm [ix1] + iy1] &
gradientsMask2D];

93

94 float v00 = Dot (g00, tx0, ty0);
95 float v10 = Dot (g10, tx1, ty0);
96 float v01 = Dot (g01, tx0, ty1);
97 float v11 = Dot (g11, tx1, ty1);
98

99 float tx = Smooth (tx0);
100 float ty = Smooth (ty0);
101 return Mathf.Lerp (
102 Mathf.Lerp (v00, v10, tx),
103 Mathf.Lerp (v01, v11, tx),
104 ty) * sqr2;
105 }
106

A.7. PERLINNOISE.CS 117

107 /**
108 * **********************
109 * Implementation of noise
110 * **********************
111 **/
112 public float Noise (Vector2 point)
113 {
114 int x = Mathf.FloorToInt (point.x);
115 int y = Mathf.FloorToInt (point.y);
116 x &= SIZE;
117 y &= SIZE;
118 int v = perm [x + y];
119 v &= SIZE;
120 return v / 2;
121 }
122

123

124 /**
125 * **********************
126 * Implementation of 2D fractal perlin noise
127 * **********************
128 **/
129 public float FractalNoise2D (Vector3 point, int octaves, float

frequency, float lacunarity, float persistence, float gain)
130 {
131 float sum = Perlin2D (point, frequency);
132 float amplitude = 1f;
133 float range = 1f;
134 for (int o = 1; o < octaves; o++) {
135 frequency *= lacunarity;
136 amplitude *= persistence;
137 range += amplitude;
138 sum += Perlin2D (point, frequency) * amplitude;
139 }
140 return (sum / range) * gain;
141 }
142 }

118 APPENDIX A. CODE APPENDIX

A.8 PlayerCollision.cs

Listing A.8: PlayerCollision.cs

1 using UnityEngine;
2 using System.Collections;
3

4 public class PlayerCollision : MonoBehaviour
5 {
6 public GameManager gm;
7 private PlayerSound ps;
8 Vector3 chunkPosition = new Vector3 (0, 0, 0);
9

10 /**
11 * **********************
12 * Initialization
13 * **********************
14 **/
15 void Start ()
16 {
17 ps = gameObject.GetComponent<PlayerSound> ();
18 }
19

20 /**
21 * **********************
22 * Used for collecting coins
23 * **********************
24 **/
25 void OnControllerColliderHit (ControllerColliderHit hit)
26 {
27 if (hit.gameObject.name == "terrainChunk") {
28 chunkPosition = hit.gameObject.transform.position;
29 }
30

31 if (hit.gameObject.name == "Coin(Clone)") {
32 gm.AddPoints (1);
33 gm.CollectCoin (chunkPosition);
34 ps.PlayCoinSound ();
35 Destroy (hit.gameObject);
36 }
37 }
38 }

A.9. PLAYERSOUND.CS 119

A.9 PlayerSound.cs

Listing A.9: PlayerSound.cs

1 using UnityEngine;
2 using System.Collections;
3

4 public class PlayerSound : MonoBehaviour
5 {
6 public AudioClip[] footstepSounds;
7 public AudioClip[] jumpSounds;
8 public AudioClip gunSound;
9 public AudioClip coinSound;

10 public int points = 0;
11 private CharacterController pc;
12 private bool isWalking = false;
13 private bool isFalling = false;
14 public float walkSpeed = 0.3f;
15

16 /**
17 * **********************
18 * Initialization
19 * **********************
20 **/
21 void Start ()
22 {
23 pc = GetComponent<CharacterController> ();
24 InvokeRepeating ("WalkSound", 0.0f, walkSpeed);
25 }
26

27 /**
28 * **********************
29 * Updates every frame
30 * **********************
31 **/
32 void Update ()
33 {
34 if (!pc.isGrounded) {
35 isFalling = true;
36 }
37 if (pc.velocity.magnitude > 0.3f && pc.isGrounded) {
38 isWalking = true;
39 } else {
40 isWalking = false;
41 }
42

43 if (Input.GetKeyDown ("space") && pc.isGrounded) {
44 PlayJumpSound ();
45 }
46 }
47

48 /**
49 * **********************
50 * Play walk sound
51 * **********************
52 **/
53 void WalkSound ()

120 APPENDIX A. CODE APPENDIX

54 {
55 if (isWalking) {
56 audio.pitch = Random.Range (0.9f, 1.1f);
57 audio.PlayOneShot (footstepSounds [(int)Random.Range

(0, footstepSounds.Length)], 0.5f);
58

59 }
60 }
61

62 /**
63 * **********************
64 * Play jump sound
65 * **********************
66 **/
67 void PlayJumpSound ()
68 {
69 audio.pitch = Random.Range (0.9f, 1.1f);
70 audio.PlayOneShot (jumpSounds [(int)Random.Range (0,

jumpSounds.Length)], 1f);
71 }
72

73 /**
74 * **********************
75 * Play collect coin sound
76 * **********************
77 **/
78 public void PlayCoinSound ()
79 {
80 audio.pitch = Random.Range (0.7f, 1.3f);
81 audio.PlayOneShot (coinSound, 1f);
82 }
83 }

A.10. ROTATION.CS 121

A.10 Rotation.cs

Listing A.10: Rotation.cs

1 using UnityEngine;
2 using System.Collections;
3

4 public class Rotation : MonoBehaviour
5 {
6 public float speed = 0.4f;
7 public float startangle = 272;
8 private float yRotation;
9 private float xRotation;

10

11 /**
12 * **********************
13 * Initialization
14 * **********************
15 **/
16 void Start ()
17 {
18 yRotation = startangle;
19 }
20

21 /**
22 * **********************
23 * Updates every frame
24 * **********************
25 **/
26 void Update ()
27 {
28 transform.rotation = Quaternion.Euler (new Vector3 (

yRotation, 0, xRotation));
29 yRotation = yRotation + speed;
30 xRotation = xRotation + speed;
31 }
32 }

122 APPENDIX A. CODE APPENDIX

A.11 Tree2.cs

Listing A.11: Rotation.cs

1 using UnityEngine;
2 using System.Collections;
3 using System.Collections.Generic;
4

5 /***************
6 * This code is used to generate a tree based on L-System Algorithm
7 * It was initialy developed by Chanfort, a unity forum user (http

://forum.unity3d.com/members/chanfort.503785/)
8 * Source : http://forum.unity3d.com/threads/l-systems-for-unity-

free-script-included.272416/
9 * We modified this code in order to better fitting with our

expectation for our project.
10 ****************/
11

12 public class Tree2 : MonoBehaviour
13 {
14

15 //List for the number of segments
16 private List<int> numberSegments = new List<int> ();
17 public float segBottomRadius = .55f;
18 public float segTopRadius = .15f;
19 public float segLength = 1.0f;
20

21 //All the list use for vertices, normales, uv, triangle, etc
...

22 private List<float> curBotRadius = new List<float> ();
23 private List<float> curTopRadius = new List<float> ();
24 private List<Vector3> gvertices = new List<Vector3> ();
25 private List<Vector3> gnormals = new List<Vector3> ();
26 private List<Vector2> guvs = new List<Vector2> ();
27 private List<int> gtriangles = new List<int> ();
28 private List<int> topVertices = new List<int> ();
29 private List<int> minVertex = new List<int> ();
30 private List<int> maxVertex = new List<int> ();
31 private List<int> minTriangle = new List<int> ();
32 private List<int> maxTriangle = new List<int> ();
33

34 //All the others initials parameters
35 private int currentSegmentId = 0;
36 private int currentSegmentOffset = 0;
37 private int currentBranchId = 0;
38 private int verticesOffset = 0;
39 private int trianglesOffset = 0;
40 private List<float> angle = new List<float> ();
41 public float iniAngle = 25.0f;
42 private List<Vector3> segmentPos = new List<Vector3> ();
43 private List<Quaternion> segmentRot = new List<Quaternion> ();
44 private List<Vector3> segmentRotV = new List<Vector3> ();
45 private List<Vector3> segmentLocRotVect = new List<Vector3> ();
46 private int nBranchesToAdd = 0;
47 private int nbSides = 18;
48 private List<int> inhSegId = new List<int> ();
49 private List<int> inhBranchId = new List<int> ();

A.11. TREE2.CS 123

50 private List<int> branchingOrder = new List<int> ();
51 private List<Vector3> iniPos3 = new List<Vector3> ();
52 private Vector3 iniPos;
53 private Vector3 iniPos2;
54

55 //The gameobject, the mesh, filter and renderer
56 public GameObject plane;
57 public MeshFilter filter;
58 public Mesh mesh;
59 public MeshRenderer renderer;
60

61 /***************
62 * Controllabilty
63 **************/
64

65 public int numberSegmentsOrigin = 15; //Number of maximum
segments = number of iterations

66 public float coeffAngleBranch = 4.0f; //Coeff Angle Branch
67 public float coeffBranchPossibility = 1.0f; // Coeff Branch

Possibility
68 public int numberSegmentTrunk = 5; // Number of segment for the

trunk
69 public int numberSegmentFirstBranch = 2; // Number of segment

before the first branch
70

71 /***************
72 * Setup the Cone for the tree
73 **************/
74 public void SetupCone (int seed, int numberSegmentsOrigin,

float coeffAngleBranch, float coeffBranchPossibility, int
numberSegmentTrunk, int numberSegmentFirstBranch)

75 {
76

77 this.numberSegmentsOrigin = numberSegmentsOrigin;
78 this.coeffAngleBranch = coeffAngleBranch;
79 this.coeffBranchPossibility = coeffBranchPossibility;
80 this.numberSegmentTrunk = numberSegmentTrunk;
81 this.numberSegmentFirstBranch = numberSegmentFirstBranch;
82

83 //Assign the seed for controllability of the random parts
84 Random.seed = seed;
85 //Add the number maximum of segments
86 numberSegments.Add (numberSegmentsOrigin);
87

88 //Initials parameters for the tree
89 segBottomRadius = Random.Range (0.35f, 0.55f);
90 segTopRadius = Random.Range (0.12f, 0.17f);
91 segLength = Random.Range (0.5f, 0.7f);
92 iniAngle = 0.0f / segLength;
93 angle.Add (0.0f);
94 curBotRadius.Add (0f);
95 curTopRadius.Add (0f);
96 inhSegId.Add (currentSegmentId);
97 inhBranchId.Add (0);
98 branchingOrder.Add (0);
99 iniPos = new Vector3 (0f, segLength, 0f);

100 iniPos2 = new Vector3 (0f, segLength, 0f);

124 APPENDIX A. CODE APPENDIX

101 iniPos3.Add (iniPos);
102 Vector3 rotVect = new Vector3 (0f, 0f, 1f);
103 segmentPos.Add (new Vector3 (0f, 0f, 0f));
104 segmentLocRotVect.Add (new Vector3 (0f, 1f, 0f));
105 segmentRot.Add (Quaternion.AngleAxis (iniAngle, rotVect));
106 segmentRotV.Add (new Vector3 (0f, 0f, 0f));
107 curBotRadius [currentBranchId] = segBottomRadius;
108 curTopRadius [currentBranchId] = segBottomRadius - (

segBottomRadius - segTopRadius) / numberSegments [
currentBranchId];

109

110 //Drawing the first cone
111 DrawCone ();
112 //Assign branch possibility
113 float branchPossibility = coeffBranchPossibility;
114 //Calcul the rotation vector
115 rotVect = Vector3.Cross
116 (
117 (segmentLocRotVect [currentBranchId]),
118 new Vector3 (Random.Range (-1, 1f), Random.Range (-1, 1f),

Random.Range (-1, 1f))
119).normalized;
120

121

122 //CONSTRUCT THE BASE OF THE TREE
123 angle [currentBranchId] = angle [currentBranchId] +

iniAngle;
124 segmentRot [currentBranchId] = Quaternion.AngleAxis (angle

[currentBranchId], rotVect);
125 segmentRotV [currentBranchId] = RotVector (iniAngle,

segmentRotV [currentBranchId], rotVect);
126 segmentPos [currentBranchId] = segmentPos [currentBranchId]

+ (segmentRot [currentBranchId] * iniPos);
127 currentSegmentOffset = 0;
128 curTopRadius [currentBranchId] = segBottomRadius - (

segBottomRadius - segTopRadius) * (2) / numberSegments
[currentBranchId];

129 //Draw a cone for the base of the tree
130 DrawCone ();
131

132 for (int i=minVertex[currentSegmentId-1]; i<maxVertex[
currentSegmentId-1]; i++) {

133 if (topVertices [i] == 1) {
134 gvertices [i] = gvertices [i - currentSegmentOffset

- 1];
135 }
136 }
137 //Add a branch
138 AddBranch ();
139 //One less segment to construct
140 numberSegments.Add (numberSegments [currentBranchId] - 1);
141 int branchIsLocked = 0;
142

143

144 //While there is a branch to add
145 while (nBranchesToAdd>0) {
146 currentBranchId++;

A.11. TREE2.CS 125

147 //Calcul the angle for this branch
148 Vector3 randVect = new Vector3 (Random.Range (-1, 1f),

Random.Range (-1, 1f), Random.Range (-1, 1f));
149 rotVect = Vector3.Cross (segmentLocRotVect [

currentBranchId], randVect).normalized;
150 angle [currentBranchId] = 10f;
151

152 //COEFFICIENT TO INFLUENCE THE ANGLE OF THE BRANCH
153 iniAngle = coeffAngleBranch / segLength * ((iniAngle +

0.001f) / Mathf.Abs ((iniAngle + 0.001f)));
154 if (inhBranchId [currentBranchId] > 0) {
155 segmentRot [currentBranchId] = (Quaternion.

AngleAxis (0.5f * iniAngle, rotVect));
156 segmentRotV [currentBranchId] = RotVector (iniAngle

, segmentRotV [currentBranchId], rotVect);
157 } else {
158

159 }
160 segBottomRadius = curTopRadius [currentBranchId];
161 //Draw a cone
162 DrawCone ();
163 for (int i=minVertex[currentSegmentId-1]; i<maxVertex[

currentSegmentId-1]; i++) {
164 if (topVertices [i] == 1) {
165 gvertices [i] = gvertices [i - (minVertex [

currentSegmentId - 1] - minVertex [inhSegId
[currentBranchId]])];

166 }
167 }
168 iniPos2 = iniPos3 [currentBranchId];
169 //Assign branch possibility
170 branchPossibility = coeffBranchPossibility;
171

172 for (int j=1; j<numberSegments[currentBranchId]; j++) {
173 if (branchIsLocked == 0) {
174 angle [currentBranchId] = angle [

currentBranchId] + iniAngle;
175 segmentRot [currentBranchId] = segmentRot [

currentBranchId] * Quaternion.AngleAxis (
angle [currentBranchId], rotVect);

176 segmentRotV [currentBranchId] = RotVector (
iniAngle, segmentRotV [currentBranchId],
rotVect);

177

178 //NUMBER OF SEGEMENT FOR THE TRUNK
179 if (j < numberSegmentTrunk) {
180 iniPos2 = RotVector (0, iniPos2, rotVect);
181 } else {
182 iniPos2 = RotVector (iniAngle, iniPos2,

rotVect);
183 }
184

185 segmentPos [currentBranchId] = segmentPos [
currentBranchId] + RotVector (iniAngle,
iniPos2, rotVect);

186 currentSegmentOffset = 0;

126 APPENDIX A. CODE APPENDIX

187 curTopRadius [currentBranchId] =
segBottomRadius - (segBottomRadius -
segTopRadius) * (j + 1) / numberSegments [
currentBranchId];

188

189 //it will get more chance to create a branch
190 branchPossibility = branchPossibility - 0.1f;
191 //Do we need to create branches
192 if ((j > numberSegmentFirstBranch) && (Random.

Range (0f, 1f) > branchPossibility)) {
193

194 //Add a branch
195 AddBranch ();
196 numberSegments.Add (numberSegments [

currentBranchId] - j);
197 //Assign branch possibility
198 branchPossibility = coeffBranchPossibility;
199

200 //Add a branch
201 AddBranch ();
202 numberSegments.Add (numberSegments [

currentBranchId] - j);
203 //Assign branch possibility
204 branchPossibility = coeffBranchPossibility;
205

206 branchIsLocked = 0;
207 }
208

209 DrawCone ();
210

211 for (int i=minVertex[currentSegmentId-1]; i<
maxVertex[currentSegmentId-1]; i++) {

212 if (topVertices [i] == 1) {
213 gvertices [i] = gvertices [i -

currentSegmentOffset - 1];
214 }
215 }
216 }
217 }
218 branchIsLocked = 0;
219 nBranchesToAdd--;
220 }
221

222 }
223

224 /***************
225 * Get Normals
226 **************/
227 Vector3 GetNormal (Vector3 a, Vector3 b, Vector3 c)
228 {
229 Vector3 side1 = b - a;
230 Vector3 side2 = c - a;
231 return Vector3.Cross (side1, side2).normalized;
232 }
233

234 /***************
235 * Rotate Vector

A.11. TREE2.CS 127

236 **************/
237 Vector3 RotVector (float rotAngle, Vector3 original, Vector3

direction)
238 {
239 Vector3 cross1 = Vector3.Cross (original, direction);
240 Vector3 cross2 = Vector3.Cross (original, cross1);
241 Vector3 rotatedVector = Quaternion.AngleAxis (rotAngle,

cross2) * original;
242 return rotatedVector;
243 }
244

245 /***************
246 * Add a new Branch
247 **************/
248 void AddBranch ()
249 {
250 inhSegId.Add (currentSegmentId);
251 inhBranchId.Add (currentBranchId);
252 curBotRadius.Add (curBotRadius [currentBranchId]);
253 curTopRadius.Add (curTopRadius [currentBranchId]);
254 segmentPos.Add (segmentPos [currentBranchId]);
255 segmentRot.Add (segmentRot [currentBranchId]);
256 segmentRotV.Add (segmentRotV [currentBranchId]);
257 segmentLocRotVect.Add (segmentLocRotVect [currentBranchId])

;
258 angle.Add (0f);
259 nBranchesToAdd++;
260 branchingOrder.Add (branchingOrder [currentBranchId] + 1);
261 iniPos3.Add (iniPos2);
262 }
263

264

265 /***************
266 * Draw Cone
267 **************/
268 void DrawCone ()
269 {
270 int useBottomCap = 0;
271 int useTopCap = 0;
272 float height = segLength;
273 float bottomRadius = curBotRadius [currentBranchId];
274 float topRadius = curTopRadius [currentBranchId];
275 int nbVerticesCap = nbSides + 1;
276

277 /***************
278 * Construction of the vertices
279 **************/
280 int NN = nbVerticesCap + nbVerticesCap + nbSides * 2 + 2;
281 int[] vUsed = new int[NN];
282 int[] isTopVertice = new int[NN];
283 int numUsed = 0;
284

285 for (int ii=0; ii<NN; ii++) {
286 vUsed [ii] = 0;
287 isTopVertice [ii] = 0;
288 }
289

128 APPENDIX A. CODE APPENDIX

290

291 // total number of vertices needed
292 Vector3[] vertices = new Vector3[nbVerticesCap +

nbVerticesCap + nbSides * 2 + 2];
293 int vert = 0;
294 float _2pi = Mathf.PI * 2f;
295

296 // construction of the bottom vertices
297 if (useBottomCap == 1) {
298 vert = 0;
299 vUsed [vert] = 1;
300 vertices [vert++] = new Vector3 (0f, 0f, 0f);
301 numUsed++;
302 while (vert <= nbSides) {
303 float rad = (float)vert / nbSides * _2pi;
304 vertices [vert] = new Vector3 (Mathf.Cos (rad) *

bottomRadius, 0f, Mathf.Sin (rad) *
bottomRadius);

305 vUsed [vert] = 1;
306

307 numUsed++;
308 vert++;
309 }
310 }
311

312 // construction of the top vertices
313 if (useTopCap == 1) {
314 vert = nbSides + 1;
315 vUsed [vert] = 1;
316 vertices [vert++] = new Vector3 (0f, height, 0f);
317 numUsed++;
318 while (vert <= nbSides * 2 + 1) {
319 float rad = (float)(vert - nbSides - 1) / nbSides *

_2pi;
320 vertices [vert] = new Vector3 (Mathf.Cos (rad) *

topRadius, height, Mathf.Sin (rad) * topRadius)
;

321 vUsed [vert] = 1;
322 numUsed++;
323 vert++;
324 }
325 }
326

327 vert = nbSides * 2 + 2;
328 int v = 0;
329

330 // construction of the side vertices
331 while (vert <= vertices.Length - 4) {
332 float rad = (float)v / nbSides * _2pi;
333 vertices [vert] = new Vector3 (Mathf.Cos (rad) *

topRadius, height, Mathf.Sin (rad) * topRadius);
334 vertices [vert + 1] = new Vector3 (Mathf.Cos (rad) *

bottomRadius, 0, Mathf.Sin (rad) * bottomRadius);
335

336 isTopVertice [vert + 1] = 1;
337

338 vUsed [vert] = 1;

A.11. TREE2.CS 129

339 vUsed [vert + 1] = 1;
340

341 vert += 2;
342 numUsed += 2;
343 v++;
344 }
345 vertices [vert] = vertices [nbSides * 2 + 2];
346 vertices [vert + 1] = vertices [nbSides * 2 + 3];
347

348 isTopVertice [vert + 1] = 1;
349

350 vUsed [vert] = 1;
351 vUsed [vert + 1] = 1;
352

353 Vector3[] verticesA = new Vector3[numUsed + 2];
354

355 int jj = 0;
356 for (int ii=0; ii<NN; ii++) {
357 if (vUsed [ii] == 1) {
358 verticesA [jj] = vertices [ii];
359 vertices [ii] = segmentRotV [currentBranchId] +

vertices [ii];
360 gvertices.Add (vertices [ii] + segmentPos [

currentBranchId]);
361 jj++;
362 }
363 }
364 segmentLocRotVect [currentBranchId] = (segmentRotV [

currentBranchId] + (new Vector3 (0f, 1f, 0f) - new
Vector3 (0f, 0f, 0f))).normalized;

365 jj = 0;
366 for (int ii=0; ii<NN; ii++) {
367 if (vUsed [ii] == 1) {
368

369 if (isTopVertice [ii] == 1) {
370 topVertices.Add (1);
371 } else {
372 topVertices.Add (0);
373 }
374

375 jj++;
376 }
377 }
378

379 /***************
380 * Construction of the normals
381 **************/
382

383 Vector3[] normalsA = new Vector3[verticesA.Length];
384 Vector3[] normals = new Vector3[vertices.Length];
385 numUsed = 0;
386 vert = 0;
387 for (int ii=0; ii<NN; ii++) {
388 vUsed [ii] = 0;
389 }
390

391 // Construction of the bottom normals (down)

130 APPENDIX A. CODE APPENDIX

392 if (useBottomCap == 1) {
393 vert = 0;
394 while (vert <= nbSides) {
395 normals [vert] = Vector3.down;
396 vUsed [vert] = 1;
397 numUsed++;
398 vert++;
399 }
400 }
401

402 // Construction of the top normals (up)
403 if (useTopCap == 1) {
404 vert = nbSides + 1;
405 while (vert <= nbSides * 2 + 1) {
406 normals [vert] = Vector3.up;
407 vUsed [vert] = 1;
408 numUsed++;
409 vert++;
410 }
411 }
412

413 vert = nbSides * 2 + 2;
414 v = 0;
415

416 // Construction of the side normals
417 while (vert <= vertices.Length - 4) {
418 float rad = (float)v / nbSides * _2pi;
419 float cos = Mathf.Cos (rad);
420 float sin = Mathf.Sin (rad);
421 normals [vert] = new Vector3 (cos, 0f, sin);
422 normals [vert + 1] = normals [vert];
423 vUsed [vert] = 1;
424 vUsed [vert + 1] = 1;
425 numUsed += 2;
426 vert += 2;
427 v++;
428 }
429 normals [vert] = normals [nbSides * 2 + 2];
430 normals [vert + 1] = normals [nbSides * 2 + 3];
431 vUsed [vert] = 1;
432 vUsed [vert + 1] = 1;
433

434 jj = 0;
435 for (int ii=0; ii<NN; ii++) {
436 if (vUsed [ii] == 1) {
437 normalsA [jj] = normals [ii];
438 gnormals.Add (normals [ii]);
439 jj++;
440 }
441 }
442

443 /***************
444 * Construction of the UV
445 **************/
446 Vector2[] uvsA = new Vector2[verticesA.Length];
447 Vector2[] uvs = new Vector2[vertices.Length];
448 int[] uUsed = new int[vertices.Length];

A.11. TREE2.CS 131

449 for (int ii=0; ii<NN; ii++) {
450 uUsed [ii] = 0;
451 }
452

453 numUsed = 0;
454 int u = 0;
455

456 // Construction of the bottom uv
457 if (useBottomCap == 1) {
458 u = 0;
459

460 uUsed [u] = 1;
461 uvs [u++] = new Vector2 (0.5f, 0.5f);
462 numUsed++;
463

464 while (u <= nbSides) {
465 float rad = (float)u / nbSides * _2pi;
466 uvs [u] = new Vector2 (Mathf.Cos (rad) * .5f + .5f,

Mathf.Sin (rad) * .5f + .5f);
467 uUsed [u] = 1;
468 numUsed++;
469 u++;
470 }
471 }
472

473 // Construction of the top uv
474 if (useTopCap == 1) {
475 u = nbSides + 1;
476

477 uUsed [u] = 1;
478 uvs [u++] = new Vector2 (0.5f, 0.5f);
479 numUsed++;
480 while (u <= nbSides * 2 + 1) {
481 float rad = (float)u / nbSides * _2pi;
482 uvs [u] = new Vector2 (Mathf.Cos (rad) * .5f + .5f,

Mathf.Sin (rad) * .5f + .5f);
483 uUsed [u] = 1;
484 numUsed++;
485 u++;
486 }
487 }
488

489 u = nbSides * 2 + 2;
490 int u_sides = 0;
491

492 // Construction of the sides uv
493 while (u <= uvs.Length - 4) {
494 float t = (float)u_sides / nbSides;
495 uvs [u] = new Vector3 (t, 1f);
496 uvs [u + 1] = new Vector3 (t, 0f);
497 uUsed [u] = 1;
498 uUsed [u + 1] = 1;
499 numUsed += 2;
500 u += 2;
501 u_sides++;
502 }
503 uvs [u] = new Vector2 (1f, 1f);

132 APPENDIX A. CODE APPENDIX

504 uvs [u + 1] = new Vector2 (1f, 0f);
505 uUsed [u] = 1;
506 uUsed [u + 1] = 1;
507

508 jj = 0;
509 for (int ii=0; ii<NN; ii++) {
510 if (uUsed [ii] == 1) {
511 uvsA [jj] = uvs [ii];
512 guvs.Add (uvs [ii]);
513 jj++;
514 }
515 }
516

517 /***************
518 * Construction of the triangles
519 **************/
520

521 int nbTriangles = nbSides + nbSides + nbSides * 2;
522 int[] triangles = new int[nbTriangles * 3 + 3];
523 int NT = nbTriangles * 3 + 3;
524 int[] tUsed = new int[NT];
525

526 for (int ii=0; ii<NT; ii++) {
527 tUsed [ii] = 0;
528 }
529

530 numUsed = 0;
531

532 int tri = 0;
533 int i = 0;
534 int missTris = 0;
535 // Construction of the bottom triangles
536 if (useBottomCap == 1) {
537 while (tri < nbSides - 1) {
538 if (useBottomCap == 1) {
539 triangles [i] = 0;
540 triangles [i + 1] = tri - missTris + 1;
541 triangles [i + 2] = tri - missTris + 2;
542

543 tUsed [i] = 1;
544 tUsed [i + 1] = 1;
545 tUsed [i + 2] = 1;
546 }
547 numUsed += 3;
548 tri++;
549 i += 3;
550 }
551 triangles [i] = 0;
552 triangles [i + 1] = tri - missTris + 1;
553 triangles [i + 2] = 1;
554

555 tUsed [i] = 1;
556 tUsed [i + 1] = 1;
557 tUsed [i + 2] = 1;
558 numUsed += 3;
559 tri++;
560 i += 3;

A.11. TREE2.CS 133

561 }
562

563 if (useBottomCap == 1) {
564 if (useTopCap == 1) {
565 missTris = 0;
566 }
567 if (useTopCap == 0) {
568 missTris = 0;
569 }
570 } else if (useBottomCap == 0) {
571 if (useTopCap == 1) {
572 missTris = nbSides + 1;
573 } else if (useTopCap == 0) {
574 missTris = nbSides + 1;
575 }
576 }
577

578 tri = nbSides;
579 i = 3 * tri;
580

581 // Construction of the top triangles
582 if (useTopCap == 1) {
583 while (tri < nbSides*2) {
584

585 triangles [i] = tri - missTris + 2;
586 triangles [i + 1] = tri - missTris + 1;
587 triangles [i + 2] = nbVerticesCap - missTris;
588

589 tUsed [i] = 1;
590 tUsed [i + 1] = 1;
591 tUsed [i + 2] = 1;
592

593 numUsed += 3;
594

595 tri++;
596 i += 3;
597

598 }
599

600 triangles [i] = nbVerticesCap - missTris + 1;
601 triangles [i + 1] = tri - missTris + 1;
602 triangles [i + 2] = nbVerticesCap - missTris;
603

604 tUsed [i] = 1;
605 tUsed [i + 1] = 1;
606 tUsed [i + 2] = 1;
607

608 numUsed += 3;
609 tri++;
610 i += 3;
611 tri++;
612 }
613

614 if (useBottomCap == 1) {
615 if (useTopCap == 1) {
616 missTris = 0;
617 }

134 APPENDIX A. CODE APPENDIX

618 if (useTopCap == 0) {
619 missTris = nbSides + 1;
620 }
621 } else if (useBottomCap == 0) {
622 if (useTopCap == 1) {
623 missTris = nbSides + 1;
624 } else if (useTopCap == 0) {
625 missTris = nbSides * 2 + 2;
626 }
627 }
628

629 tri = nbSides * 2 + 2;
630 i = 3 * tri - 3;
631

632

633 // Construction of the sides triangles
634 while (tri <= nbTriangles) {
635 triangles [i] = tri - missTris + 2;
636 triangles [i + 1] = tri - missTris + 1;
637 triangles [i + 2] = tri - missTris + 0;
638

639 tUsed [i] = 1;
640 tUsed [i + 1] = 1;
641 tUsed [i + 2] = 1;
642

643 numUsed += 3;
644 tri++;
645 i += 3;
646

647 triangles [i] = tri - missTris + 1;
648 triangles [i + 1] = tri - missTris + 2;
649 triangles [i + 2] = tri - missTris + 0;
650

651 tUsed [i] = 1;
652 tUsed [i + 1] = 1;
653 tUsed [i + 2] = 1;
654

655 numUsed += 3;
656 tri++;
657 i += 3;
658 }
659

660 int[] trianglesA = new int[numUsed];
661

662 jj = 0;
663 for (int ii=0; ii<NT; ii++) {
664 if (tUsed [ii] == 1) {
665 trianglesA [jj] = triangles [ii];
666 gtriangles.Add (triangles [ii] + verticesOffset);
667 jj++;
668 }
669 }
670

671 jj = 0;
672 minVertex.Add (verticesOffset);
673 for (int ii=0; ii<NN; ii++) {
674

A.11. TREE2.CS 135

675 if (vUsed [ii] == 1) {
676

677 jj++;
678 }
679 }
680 maxVertex.Add (verticesOffset + jj);
681 verticesOffset = verticesOffset + jj;
682 currentSegmentOffset = jj;
683

684 minTriangle.Add (trianglesOffset);
685 jj = 0;
686 for (int ii=0; ii<NT; ii++) {
687 if (tUsed [ii] == 1) {
688

689 jj++;
690 }
691 }
692 maxTriangle.Add (trianglesOffset + jj);
693 trianglesOffset = trianglesOffset + jj;
694 currentSegmentId++;
695 }
696

697

698 /***************
699 * Construction of the mesh
700 **************/
701 public void CreateMesh ()
702 {
703 //Creating the gameobject
704 plane = new GameObject ("Tree2");
705 //Adding a mesh filter component
706 filter = plane.AddComponent<MeshFilter> ();
707 mesh = filter.mesh;
708 //Clear the mesh
709 mesh.Clear ();
710 //Adding vertices, normales, uv, triangless
711 mesh.vertices = gvertices.ToArray ();
712 mesh.normals = gnormals.ToArray ();
713 mesh.uv = guvs.ToArray ();
714 mesh.triangles = gtriangles.ToArray ();
715 mesh.RecalculateBounds ();
716 //Render it
717 renderer = plane.AddComponent (typeof(MeshRenderer)) as

MeshRenderer;
718 renderer.material.shader = Shader.Find ("Toon/Lighted

Outline");
719 Texture2D tex = new Texture2D (1, 1);
720 tex.SetPixel (0, 0, Color.grey);
721 tex.Apply ();
722 renderer.material.color = Color.grey;
723 }
724

725 /***************
726 * Destruction of the mesh
727 **************/
728 public void DestroySelf ()
729 {

136 APPENDIX A. CODE APPENDIX

730 Destroy (plane);
731 Destroy (gameObject);
732 }
733 }

A.12. FIREFLY.CS 137

A.12 FireFly.cs

Listing A.12: Rotation.cs

1 using UnityEngine;
2 using System.Collections;
3

4 public class FireFly : MonoBehaviour
5 {
6 float x;
7 float y;
8 float z;
9 float x_speed = 0;

10 float y_speed = 0;
11 float z_speed = 0;
12 private int[] scale;
13 public AudioClip fireflyBell;
14 public GameObject target;
15

16 /**
17 * **********************
18 * Initialization
19 * **********************
20 **/
21 void Start ()
22 {
23 target = GameObject.Find ("Graphics");
24 x = transform.position.x;
25 y = transform.position.y;
26 z = transform.position.z;
27 InvokeRepeating ("changeDirection", 0, 0.2F);
28 InvokeRepeating ("PlayBell", 0.0f, Random.Range (3f, 5f));
29 }
30

31 /**
32 * **********************
33 * Updates every frame
34 * **********************
35 **/
36 void Update ()
37 {
38 x = x + x_speed;
39 y = y + y_speed;
40 z = z + y_speed;
41 transform.position = new Vector3 (x, y, z);
42 if (y < 1) {
43 y = 1;
44 }
45 if (y > 4) {
46 y = 4;
47 }
48 target = GameObject.Find ("Graphics");
49 transform.rotation = transform.localRotation;
50 }
51 /**
52 * **********************
53 * Play bell sounds

138 APPENDIX A. CODE APPENDIX

54 * **********************
55 **/
56 void PlayBell ()
57 {
58 int[] scale = new int[8] {0,2,4,6,7,9,11,12};
59 float pitchIndex = scale [Random.Range (0, 7)];
60 float pitch = pitchCorrect (pitchIndex);
61 audio.pitch = pitch;
62 audio.PlayOneShot (fireflyBell, 1f);
63 }
64 /**
65 * **********************
66 * Change Direction randomly
67 * **********************
68 **/
69 void changeDirection ()
70 {
71 x_speed = Random.Range (-0, 0.02f) - 0.01f;
72 y_speed = Random.Range (-0f, 0.02f) - 0.01f;
73 z_speed = Random.Range (-01f, 0.02f) - 0.01f;
74 }
75

76 /**
77 * **********************
78 * DestroySelf
79 * **********************
80 **/
81 public void DestroySelf ()
82 {
83 Destroy (gameObject);
84 }
85

86 /**
87 * **********************
88 * Speed -> pitch
89 * **********************
90 **/
91 public float pitchCorrect (float speed)
92 {
93 return Mathf.Pow (2, speed / 12.0f);
94 }
95 }

A.13. COIN.CS 139

A.13 Coin.cs

Listing A.13: Rotation.cs

1 using UnityEngine;
2 using System.Collections;
3 /**
4 * **********************
5 * Used for coins, which have no need for implementation at the

moment
6 * **********************
7 **/
8 public class Coin : GenericObject {
9

10

11 }

Appendix B

Instruction guide

All the attached programs can be executed on Windows, Mac OS X and Linux
based systems. In order to run the programs, simply use the executable file.

B.1 Surogou

When the program is executed, the programs enters the title screen. In the
title screen the user can adjust the draw distance in the world, by using the
”draw distance” slider. In the ”seed” text box the user can enter a string of
letters, that will be used for the seed. Use the button ”Generate World” in
order to start the game. In order to exit the game or generate a new world,
use the ”escape” key.

Movement

To explore the world use the ”w” and ”s” key on the keyboard to move forward
and backward and the ”a” and ”d” key to strafe left and right. The mouse or
keypad is used to look around. The ”space” key can be used for jumping, if
the user needs to elevate to higher terrain.

B.2 Surogou (Unity Project)

The Unity project for Surogou is attached to the project. In order to run this
project, Unity Free, which can be downloaded on ”http://unity3d.com/”, has
to be installed on the system. The main scene for the project can be found in
the folder: ”2 Unity Project/16122014/Assets/InfiniteProblem02.unity”.

B.3 Perlin Tester

This program is a special version of Surogou, where the user can create a terrain
using the the six parameters: octave, frequency, lacunarity, persistence, gain
and type, described on page 76.

141

142 APPENDIX B. INSTRUCTION GUIDE

B.4 L-System Tester

L-System Tester, is used to test our modified version of Chanforts [3] L-Tree
algorithm. The parameters that can be used are descibed on page 62.

B.5 Infinite World

Infinite World is the program which is described on page 25. This program
shows, how position of the player can be used to create a consistent game
world. A technique we also apply in Surogou. The arrow keys of the keyboard
are used to move the view of the player. Note: there are no way to exit this
program, therefore it is recommended to run the program in window mode.

